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Theory of a collective atomic recoil laser
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We perform a study of a collective atomic recoil laser~CARL! that goes beyond the initial growth period.
The study is based on a theory that treats both internal and external degrees of atomic freedom quantum
mechanically but regards the laser light as a classical field obeying Maxwell’s equations. We introduce the
concepts of momentum families and diffraction groups and organize the matter wave equations in terms of
diffraction groups. The steady-state lasing conditions are discussed in connection with the probe gain in the
recoil-induced resonances. The nontrivial steady states and the linear stability analysis of the steady states are
both carried out by the method of two-dimensional continued fractions. Both stable and unstable nontrivial
steady states are calculated and discussed in the context of regarding the CARL as multiwave mixing involving
many modes of matter waves and two optical fields.
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I. INTRODUCTION

The collective atomic recoil laser~CARL! was proposed
and studied by Bonifacio and collaborators@1–5# as an
atomic analog of the free electron laser. In the Bonifa
model, two-level atoms are subject to two counterpropag
ing fields: a pump field from an external source and a sp
taneously generated CARL signal~probe field! supported by
a ring cavity. Essential to the CARL operation is the posit
feedback between the probe signal and the atomic den
grating, resulting from the modulation of the standing wa
created by the probe and pump fields. An increased pr
field can increase the amplitude of the standing wave
thereby enhance the strength of the atomic density grat
the enhanced atomic density grating, in turn, can backsc
the pump field more effectively off the grating into the pro
field. These two processes go hand in hand, much like t
counterparts in the free-electron laser, leading to a runa
amplification of the probe field. Experimental efforts ha
been made by Lippiet al. @6# and by Hemmeret al. @7#, but
the physical origin of the probe gain observed in the
atoms by these two groups, and, in particular, its connec
with the CARL mechanism, have remained controversial@8#.

Earlier, Guoet al. @9,10# studied recoil-induced resonanc
~RIR! under the same atom-field configuration but witho
the ring cavity. A probe gain was found when the probe
tuned on the red side of the pump frequency and was l
observed experimentally by Courtoiset al. @11#. This gain
was attributed to momentum redistribution among atoms
different momentum subgroups and could essentially be
counted for by the Raman transitions between different m
mentum states. Since a state in momentum space c
sponds to a plane wave in position space, the popula
buildup of a particular momentum state is equivalent to
growth of the corresponding matter wave, which, in retu
1050-2947/2001/63~5!/053810~16!/$20.00 63 0538
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enhances the atomic density grating through its interfere
with the opposing wave. Thus, both the CARL and R
should share the same gain mechanism as pointed ou
Berman@12#.

CARL theories can be broadly divided into semiclassi
and quantum-mechanical ones, depending on how the ce
of-mass motion is treated. The CARL theory of Bonifac
et al. @1–5# was developed by casting the Heisenberg eq
tions into thec-number form for the expectation values
the relevant operators. This approach is semiclassical s
the evolution of atomic momentum and position essentia
follows Newton’s second law. This approximation holds
long asDpD@\k, where\k is the momentum of a single
photon, andDpD is the width of the Gaussian momentu
distribution. For atoms withDpD<\k, the de Broglie matter
wavelength exceeds that of the field and atoms can no lon
be considered as localized classical particles moving un
the influence of the electromagnetic fields. One must th
seek a quantum-mechanical approach in which the cente
mass motion is also treated quantum mechanically. Thi
precisely the method used by Moore and Meystre@13# to
address the matter wave aspect of the CARL operation
by Berman@12# to make a comparison between RIR and t
CARL.

In this paper, we perform a comprehensive study that g
beyond the initial period of growth for a CARL model con
sisting of ultracold atoms and far-off-resonant fields. T
goal is to make the CARL theory nearly as comprehensive
its counterpart in a conventional laser system. The ste
state in ordinary lasers is achieved by constantly pump
the atoms to the excited levels. Here, we seek to ach
steady state by a ‘‘pump’’ mechanism that maintains
steady flow of cold atoms into and out of the interacti
region. The pump mechanism is simulated by a decay rateg uu
whose inverse can be viewed as a transient interaction
©2001 The American Physical Society10-1
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@9,10,14,15# and by a source containing a statistical mixtu
of ground state atoms.~For simplicity, we ignore the atom
atom collisions@16,17# by assuming that the atomic samp
is sufficiently dilute.!

This paper will also explore the connection of the CAR
with atom optics, an area of research focusing on how
manipulate matter waves by optical means. Much of the
cent interest in the CARL has motivated largely by two fa
tors. First, the recent experimental demonstrations of fo
wave mixing @18,19# and superradiant Rayleigh scatterin
@20# have, to some degree, connections with the CA
mechanism@21#. Second, the CARL model can be viewe
from the perspective of atom optics, as a parametric ampl
@22,23# for the momentum side modes. This point of vie
has largely been explored along the line of how to control
quantum-statistical properties of side modes via optical fie
@23,24#. In contrast, we focus on both the steady-state
dynamical behavior of the side modes.

It must be acknowledged that solving for the steady sta
is by no means trivial. First, the quantization of the cent
of-mass momentum implies that a single internal ene
level now becomes a momentum continuum. Second, in
system, a photon of one direction can be transferred in
photon of opposite direction by the Raman process involv
the momentum states of the same internal level. Such a
cess can cause an infinite number of momentum states t
coupled. Finally, the fact that the loaded atoms are in a
tistical mixture forces us to adopt the density matrix form
ism as our theoretical framework. This introduces a furt
complication since each density matrix element is a funct
of two independent momenta.

In this paper, we make several conceptual advance
overcome these obstacles. First, we adapt the concept of
mentum family from early studies in both two-@15,25# and
three-level systems@26,27# to the CARL model. A momen-
tum family is defined as consisting of all the states that
coupled under the coherent interaction. By dividing the to
momentum space into different momentum families, we c
concentrate on solution of the coupled equations involv
the same family, whose dimension is typically much sma
than that of the total space. Next, we divide each momen
family into different diffraction groups that are coupled on
to their immediate neighbors. This lends itself very nicely
the method of two-dimensional matrix continued fractio
~2D MCF!, developed by Caiet al. @28# ~see also Puet al.
@29#! as a powerful tool for studying 2D laser cooling in
semi-classical approach. The advantage of this techniqu
evident from the standpoint of computational efficiency sin
the size of matrices to be inverted in the 2D MCF is limit
by the size of the diffraction groups, which is much smal
than the size of the momentum family, and is, of cour
much smaller than the size of the total space.

In Sec. II, we derive the atomic equations of motion in
way similar to that adopted by Moore and Meystre@13# and
the field equations starting from Maxwell’s equation follow
ing Berman@12#. However, the emphasis of the section is
the conceptual development of momentum families and
fraction groups. In Sec. III, we present the steady-state eq
tions and linearized equations around steady states. This
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tion also covers the numerical approach based on the
MCF for determining the steady states and their stabilities
Sec. IV, we present and discuss the numerical results a
with their implications. We show, from the consideration
the lasing condition, that RIR and the CARL share the sa
gain mechanism. In addition to the growth of the probe fie
we also discuss the growth of the momentum side mode
the matter waves from the perspective of atom optics. T
dynamics, including the instabilities, of the CARL sign
will also be discussed. The main results are summarize
Sec. V.

II. THEORETICAL MODEL AND EQUATIONS OF
MOTION

We consider a CARL system comprised of a CARL s
nal supported by a unidirectional ring cavity, a strong pum
field directed almost opposite to the probe field, and a ste
flow of an ultracold atomic beam into and out of the acti
region along a direction normal to the propagation of t
fields. The atomic beam is made of two-level atoms w
transition frequencyV21. The pump field features an ampl
tudeF2, a frequencyv2, and a wave number2k2, while the
weak probe field is characterized by an amplitudeF1, a fre-
quencyv1, and a wave numberk1. The frequencyv2 is
fixed by the external source whilev1, although close to the
cavity mode frequencyvC , is determined eventually by th
steady-state condition. Furthermore,k25v2 /c, where c is
the speed of light in vacuum, butk15vC /c, since the probe
is a cavity field.

A. Equations for the atomic variables

We begin by expanding the total field in terms of its com
ponents as

F̂5S 1

2
F1e2 iv2t1 ik1ẑ1

1

2
F2e2 iv2t2 ik2ẑD1H.c., ~1!

where the atomic center-of-mass position is treated as
operator ẑ in anticipation of its interaction with ultracold
atoms. Note that the field 1 is expanded in terms ofv2 in-
stead ofvC or v1 merely for the purpose of making th
derivation simple. We can do this here becausev2 , vC , and
v1 are so close to each other that the assumption ofF1 being
a slowly varying amplitude remains valid under the expa
sion ~1!. As in our earlier work@30,31#, we choose to work
in the Hilbert space spanned byu i ,p&, wherei is the index of
the internal energy andp is the eigenvalue of thez compo-
nent of the center-of-mass momentum operator.~We restrict
ourselves to a one-dimensional problem alongz; a trace over
x andy dimensions is implied wherever appropriate.! In this
space, the atomic Hamiltonian

ĤA5 (
i 51,2

E S \V21d i ,21
p2

2mD u i ,p&^p,i udp ~2!
0-2
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THEORY OF A COLLECTIVE ATOMIC RECOIL LASER PHYSICAL REVIEW A63 053810
is diagonal while the laser-atom interaction Hamiltoni
ĤL-A52m̂F̂, in the rotating wave approximation, takes t
simple form

ĤL-A52\e2 iv2tFE1E u2,p1\k1&^p,1udp1E2

3E u2,p2\k2&^p,1udpG1H.c., ~3!

where

Ei5
m21Fi

2\

is the Rabi frequency of thei th field andm215^2um̂u1& is the
atomic transition dipole moment. The evolution of th
atomic density matrix operatorr8 in the Schro¨dinger picture
obeys

dr8

dt
52

i

\
@H,r8#1S dr8

dt D
inc

, ~4!

where (dr8/dt) inc is a shorthand notation for correction
associated with the finite transit time interaction and the r
dom fluctuations due to spontaneous emission and collisi
We consider first the coherent part@the first term on the right
hand side of Eq.~4!#. In terms of the slowly varying density
matrix elements

r21~p,p8![r218 ~p,p8!eiv2t,
~5!

r11~p,p8![r118 ~p,p8!,

we find that

d

dt
r11~p,p8!52 i S p22p82

2m\
D r11~p,p8!

1 i @E1* r21~p1\k1 ,p8!2E1r12~p,p81\k1!#

1 i @E2* r21~p2\k2 ,p8!2E2r12~p,p82\k2!#

~6!

and

d

dt
r21~p,p8!52 i S p22p82

2m\
2DAD r21~p,p8!

1 iE1@r11~p2\k1 ,p8!2r22~p,p81\k1!#

1 iE2@r11~p1\k2 ,p8!2r22~p,p82\k2!#,

~7!

where

DA5v22V21
05381
-
s.

is the detuning of the pump relative to the atomic transit
frequency. As stated in the Introduction, we are interested
the far-off-resonance case. This means that

uDAu@G,g,uv22vCu,DvD ,

whereG is the population decay rate of the excited level,g
the polarization dephasing rate, andDvD the Doppler fre-
quency width. Under this condition, we can ignore the e
cited population and solve forr21(p,p8) from Eq. ~7! in
terms of the ground state density matrix elements

r21~p,p8!'2
E1

DA
r11~p2\k1 ,p8!2

E2

D
A

r11~p1\k2 ,p8!

~8!

under the so-called adiabatic approximation. Substituting
~8! into Eq. ~6!, we find that

dr11~p,p8!

dt
52 i S p22p82

2m\
D r11~p,p8!2g uu

3@r11~p,p8!2r11
(0)~p,p8!#

1 i
E2E1*

DA
@r11„p,p82\~k11k2!…

2r11„p1\~k11k2!,p8…#1 i
E2* E1

DA

3@r11„p,p81\~k11k2!…

2r11„p2\~k11k2!,p8…#, ~9!

where the term associated withg uu is introduced phenomeno
logically to simulate the finite transit time process. Here t
inverse ofg uu is approximately with the interaction time re
sulting from atoms entering and leaving the interaction
gion, and

r11
(0)~p,p8!52p\Lz

21W~p!d~p2p8! ~10!

represents the momentum distribution of the loaded ato
sample withLz being the effective interaction length alon
the z dimension and

E
2`

1`

W~p!dp51.

Equation~10! corresponds to a Wigner function consisting
a momentum distribution times a uniform spatial dens
@12#. Since the atomic beam is assumed to be normal to
optical axis, we estimateg uu as the ratio of the diameter o
the pump field to the mean longitudinal speed, and appro
mateW(p) as the transverse momentum distribution.

B. Momentum families and diffraction groups

The idea of dividing the total momentum space into d
ferent families emerged in the study of the momentum d
tribution of two-level atoms interacting with a near-resona
0-3
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standing wave@15,25#. This approach gained popularity an
was, in fact, instrumental in the analysis of subrecoil la
cooling for three-level systems@26,27#. To be specific, con-
sider a situation in which two counterpropagating fields w
the same wave numberk interact independently with the tw
transitions in a degenerateL atomic system. Letu3,p& rep-
resent the excited momentum state whileu1,p& and u2,p&
stand, respectively, for the momentum states of the two
generate ground levels. With an appropriate choice of
field polarizations, we can assume, without loss of gene
ity, that the forward field interacts with theu3&↔u1& transi-
tion while the backward field is coupled to theu3&↔u2&
transition. Because of the momentum conservation, an a
in u3,p& can only make a transition tou1,p2\k& (u2,p
1\k&) by emission of a forward~backward! photon. Con-
versely, an atom inu1,p2\k& (u2,p1\k&) can only be
pumped tou3,p& by absorption of a forward~backward! pho-
ton. We are thus led to define a momentum familyz(p0),
where 2`<p0<1`, to consisting of three member
$u3,p0&,u1,p02\k&,u2,p01\k&%, that can only recycle
among themselves under the coherent interaction.

In our model, the momentum exchange between phot
and atoms is accomplished by a Raman anti-Stokes pro
mediated by the effective two-photon fielduE1E2* /DAu. An
atom in u1,p& can make a transition tou1,p1\(k11k2)& by
simultaneous absorption of a CARL photon and emission
a pump photon. Conversely, an atom inu1,p& can make a
transition tou1,p2\(k11k2)& by simultaneous emission o
a CARL photon and absorption of a pump photon. In t
way, an atom initially prepared inu1,p& can end up inu1,p
1n\(k11k2)&, where2`<n<`, by n such Raman tran
sitions. Based on this discussion, we define a momen
family z(p0), where 0<p0,\(k11k2), to be comprised of
all the base states$u1,p01n\(k11k2)&,2`<n<`%. We
limit p0 to the values between 0 and\(k11k2) for the pur-
pose of uniqueness because if, for example,p0.\(k11k2)
but less than 2\(k11k2), the elementu1,p01n\(k11k2)&
should, in fact, belong toz(p08) wherep085p02\(k11k2)
,\(k11k2). Clearly, if an atom starts from a base sta
belonging to a familyz(p0) it can only recycle among the
states of the same family under the Raman process. Ind
spontaneous emission can cause atoms to move from
family to another due to the random momentum exchang
the process of spontaneous emission. However, this is o
concern here because spontaneous emission is absent
our model.

As noted in the Introduction, the injected atoms are in
state that is best described by the density matrix formali
A density matrix elementr11„p01n\(k11k2),p081m\(k1

1k2)… can be formed by members from two different fam
lies if p0Þp08 . However, because the injected atoms are
sumed to be spatially uniform, they lack the coherences
tween the members of different families. Hence, the eleme
r11„p01n\(k11k2),p081m\(k11k2)… in which p0Þp08
cannot become different from zero in the course of the e
lution. We then need to consider only the density mat
elements formed by members of the same familyp05p08 . In
a typical numerical calculation, we must define cutoff m
05381
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mentaPmax andPmin in order to close each momentum fam
ily. In addition, we need to divide 0<p0<\(k11k2) into L
subintervals so that there is a total number ofL momentum
families. ~In contrast, in three-level systems, the moment
family is closed by itself butp0 is truncated according to th
relevant momentum space.! At this point, we associate eac
momentum family with a map of a square lattice of leng
\(k11k2) in a two-dimensional momentum space as sho
in Fig. 1. Situated on a lattice site of coordinate (n,m) is the
density matrix elementr11(p,p8), where p5p01n\(k1
1k2) and p85p01m\(k11k2). The map for z(p0
1Dp0) can be produced by shifting thez(p0) map along
the 145° direction by a displacement ofA2Dp0. It is then
not difficult to visualize that asp0 changes from 0 to\(k1
1k2) the momentum space will be filled with density matr
elements along all the145° lines as shown in Fig. 2. Thi
pattern suggests that we introduce the following expansi

r11~p,p8!52p\Lz
21 (

l 52`

1`

Rl~p!d„p2p82 l\~k11k2!…,

~11!

where the Diracd function serves as a constraint, limiting a
the elements to the145° diagonal lines. At this point, we
define thel th diffraction group as consisting of all the ele
ments r11(p,p8) in which p2p82 l\(k11k2)50. The
name of ‘‘diffraction group’’ can be easily understood on
we transform the matrix elementr11(p,p8) into thez repre-
sentation

^z,1uru1,z&5
1

2p\E E r11~p,p8!ei (p2p8)z/\dpdp8,

~12!

FIG. 1. A map of the density matrix elements of a single m
mentum family withNmax53. The cutoff momenta for a momentum
family z(p0) are defined asPmin5p02Nmax andPmax5p01Nmax in
units of \(k11k2).
0-4
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THEORY OF A COLLECTIVE ATOMIC RECOIL LASER PHYSICAL REVIEW A63 053810
which, with the help of Eq.~11!, can also be written in the
form

^z,1uru1,z&5Lz
21(

l
eil (k11k2)zE Rl~p!dp. ~13!

In an atomic diffraction experiment in which the incide
atomic beam is normal to thez direction, the atomic beam
will be diffracted into different angles corresponding to d
ferent values ofl with a weight proportional to*Rl(p)dp.
The functionsRl(p) satisfy two important relations: first,

E R0~p!dp51, ~14!

which represents the population conservation and can be
rived from Eqs.~ 9!, ~10!, and~11! @or later directly from Eq.
~28!#; second,

R2 l~p!5Rl„p1 l\~k11k2!…* , ~15!

due to the fact thatr i j (p,p8)5r j i (p8,p)* . The concept of
the momentum family combined with the concept of the d
fraction group establishes the conceptual framework for
efficient numerical approach to the steady-state problem

C. Equations for the fields

We now turn our attention to the evolution of the field
starting from Maxwell’s equation for the total field

]2F

]z2
2

1

c2

]2F

]t2
5m0

]2P

]t2
,

FIG. 2. A map of diffraction groups withNmax53. Note that
l max52lmin52Nmax56, where l max and l min are, respectively, the
highest and lowest diffraction group numbers.
05381
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whereP is the macroscopic atomic polarization. A field o
the form given by Eq.~1! can only be driven by a polariza
tion of similar form:

P5S 1

2
P1e2 iv2t1 ik1z1

1

2
P2e2 iv2t2 ik2zD1c.c., ~16!

wherePi ( i 51,2) are slowly varying amplitudes. Note th
we have changedẑ into z because we consider Maxwell’
equation as an average equation inuz& space. Under the
slowly varying amplitude approximation, we find

]Ei

]t
1c

]Ei

]z
5 i

v2m21

4«0\
Pi2 i Fki

22S v2

c D 2G c2

2v2
Ei . ~17!

The polarization, on the other hand, is an average variabl
the positionz, and is calculated through the trace over t
internal degrees of freedom. These considerations lead t

P5Nm21Lz^z,2ur8u1,z&1c.c., ~18!

whereN is the atomic density.̂z,2ur8u1,z& is linked to the
density matrix element in momentum space by the trans
mation

^z,2ur8u1,z&5
1

2p\E E r218 ~p,p8!ei (p2p8)z/\dpdp8,

~19!

which becomes

^z,2ur8u1,z&5
1

2p\
e2 iv2tE E r21~p,p8!ei (p2p8)z/\dpdp8

~20!

after Eq.~5! is taken into account. We use Eqs.~8! and~11!
to expressr21(p,p8) in terms of the diffraction groups,

r21~p,p8!522p\Lz
21 E1

DA
(

l 52`

`

Rl~p2\k1!

3d„p2\k12p82 l\~k11k2!…

22p\Lz
21 E2

D
A

(
l 52`

`

Rl~p1\k2!

3d„p1\k22p82 l\~k11k2!…. ~21!

In order to yield the polarization in the form of Eq.~16!, we
only have to retain terms proportional tod(p2p82\k1) and
d(p2p81\k2). This means that we keep terms withl 50
and l 521 in the first sum and the terms withl 50 and l
51 in the second sum of Eq.~21!. This leads to
0-5
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H. Y. LING, H. PU, L. BAKSMATY, AND N. P. BIGELOW PHYSICAL REVIEW A63 053810
r21~p,p8!522p\Lz
21F E1

DA
R0~p2\k1!

1
E2

DA
R11~p1\k2!Gd~p2p82\k1!

22p\Lz
21F E2

DA
R0~p1\k2!

1
E1

DA
R21~p2\k1!Gd~p2p81\k2!. ~22!

By combining Eqs.~16!, ~18!, ~20!, and~22!, we find

P152
2Nm21

DA
FE11E2E R11~p!dpG , ~23!

P252
2Nm21

DA
FE21E1E R21~p!dpG , ~24!

where Eq.~14! has been used. Inserting Eqs.~23! and ~24!
into Eqs.~17!, we turn Eqs.~17! into

]E2

]t
1c

]E2

]z
52 i

Nm21
2 v2

2\«0DA
E1E R21~p!dp, ~25!

]E1

]t
1c

]E1

]z
5 idCE12 i

Nm21
2 v2

2\«0DA
E2E R1~p!dp, ~26!

where

dC5v22vC .

In reaching Eqs.~25! and ~26!, we have ignored the term
2 iNm21

2 v2Ei /2\«0DA from both equations since it repre
sents a constant frequency shift, and dropping it amount
an adjustment of the pump frequencyv2 by a constant and
will therefore not affect the dynamics of the fields. Furth
in reaching Eq.~26!, we used the approximationv21vC
'2v2. At this point, we assume thatE2 is much stronger
thanE1 and its depletion is ignored. This allows us to tre
E2 as a constant. Finally, we substitute the space deriva
]E1 /]z of Eq. ~26! by kE1 /c and N by a mean atomic
densityn5NLz/L as a means to simulate the result und
the mean field limit@5,32#

dE1

dt
5 idCE12 i

nm21
2 v2

2\«0DA
E2E R1~p!dp2kE1 , ~27!

wherek5c u lnRu/L, R is the power reflectivity of both inpu
and output couplers, andL is the total length of the ring
cavity; in the mean field limit the effect of output couple
and the free portion of the cavity on the dynamics of t
cavity field can be taken care of in a self-consistent man

D. A summary of the basic equations in scaled form

We define a unit system in which\(k11k2) is the unit of
momentum, 1/v2r the unit of time, andv2r the unit of any
frequencies and decay rates, where
05381
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v2r5\
~k11k2!2

2m

is the two-photon recoil frequency shift. Equations for t
diffraction group are derived, by inserting Eq.~11! into Eq.
~9!, with the result

dRl~p!

dt
52 i l ~2p2 l !Rl~p!1 iA* @Rl 11~p!2Rl 11~p11!#

1 iA@Rl 21~p!2Rl 21~p21!#

2g uu@Rl~p!2W~p!d l ,0#, ~28!

whereA is a new field variable defined as

A5
E2* E1

DA
.

The equation forA is derived from Eq.~27! as

dA

dt
5 idCA2 iaE R11~p!dp2kA, ~29!

where

a5
nm21

2 v2uE2u2

2\«0v2r
2 DA

2
.

Note that the same notations are used for the scaled varia
for simplicity. These equations, in the absence of the te
associated withk and g uu , are formally equivalent to those
obtained by Moore and Meystre@13#.

III. STEADY STATES AND STABILITY ANALYSIS

A. The trivial steady state and collective instabilities

The trivial steady state

Ast50,

Rl
st~p!5W~p!d l ,0

is found by inspection of Eqs.~28! and ~29! at steady state
By linearizing Eqs.~28! and ~29! around the trivial steady
state, we find

ddR11~p!

dt
52 i ~2p21!dR11~p!1 idA@W~p!2W~p21!#

2g uudR1~p!, ~30!

ddA

dt
5 idCdA2 iaE dR11~p!dp2kdA, ~31!

where bothdA and dRl(p) represent infinitesimally smal
departures from the corresponding steady-state values. In
ducing the following ansatz involving the eigenvaluel:

dR11~p!}elt,

dA}elt,

we transform Eqs.~30! and ~31! into
0-6
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dR11~p!5 idA
W~p!2W~p21!

l1g uu1 i ~2p21!
, ~32!

ldA5 idCdA2 iaE dR11~p!dp2kdA. ~33!

Finally, by eliminatingdR11(p) from Eq.~33! with the help
of Eq. ~32!, we arrive at the desired eigenvalue equation

f ~l![l1k2 idC2aE W~p!2W~p21!

l1g uu1 i ~2p21!
dp50.

~34!

The roots of f (l)50 are determined numerically and th
emergence of any roots with positive real parts is an ind
tive of collective instabilities. For the positive roots, we fo
low Moore @13# and apply the Parseval relation of Fouri
transformation to reduce Eq.~34! to

f ~l!5l1k2 idC2apE
0

`

e2v2DpD
2 /42v(l1g uu)/2

3~eiv/22e2 iv/2!dv,

which, expressed in terms of error functions, becomes

f ~l!5l1k2 idC

1
a

2

Ap

DpD
i Fe(l1g uu2 i )2/4DpD

2
erfcS 1

2

l1g uu2 i

DpD
D

2e(l1g uu1 i )2/4DpD
2
erfcS 1

2

l1g uu1 i

DpD
D G . ~35!

B. Nontrivial steady states

1. Equations

We now seek the nontrivial steady states that both
CARL signal and matter waves might be able to reach aft
long period of time.~From now on, we call nontrivial stead
states ‘‘steady states’’ for simplicity.! It is well known from
conventional laser theory that the output laser will typica
oscillate at a frequency different from the cavity mode f
quency@33,32#. For this reason, we look for the steady-sta
CARL field in the form of

A~ t !5uAstue2 idLt1 if, ~36!

where

dL5v12v2 ~37!

is the laser frequency relative to the pump frequency and
be determined from the steady-state condition, andf is an
unknown arbitrary phase. Here, the laser frequency shiftdL
is measured with respect to the pump frequency not the
ity frequency because the field@Eq. ~1!# is expanded around
the pump frequency. As a consequence of the shift in
probe frequency, the matter waves are expected to exp
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ence similar frequency shifts. Indeed, we find, after Eq.~36!
is inserted into Eqs.~28! and ~29!, that only if

Rl~p,t !5Rl
st~p!eil (2dLt1f) ~38!

can the time variable be explicitly eliminated. These cons
erations lead to the coupled nonlinear equations

i ~dC1dL!uAstu2 iaE R11
st ~p!dp2kuAstu50, ~39!

2g uuW~p!d l ,052@ i l ~2p2 l 2dL!1g uu#Rl
st~p!

1 i uAstu@Rl 11
st ~p!2Rl 11

st ~p11!#

1 i uAstu@Rl 21
st ~p!2Rl 21

st ~p21!#, ~40!

whose roots correspond to the steady-state variables of
interest.

Next, in order to perform stability analysis of the stea
states, we introduce, in terms of small perturbationsdA,
dA* , anddRl(p), the following linearization scheme:

A~ t !5uAstue2 idLt1 if1dAe2 idLt1 ifelt, ~41!

A* ~ t !5uAstueidLt2 if1dA* eidLt2 ifelt, ~42!

Rl~p,t !5Rl
st~p!eil (2dLt1f)1dRl~p!eil (2dLt1f)elt,

~43!

wherel is the eigenvalue. Substituting Eqs.~41! and ~ 43!
into Eqs.~28! and~29! and keeping terms linear with respe
to dA, dA* , and dRl(p), we arrive at the coupled linea
equations

@ i ~dL1dC!2k2l#dA2 iaE dR11~p!dp50, ~44!

@2 i ~dL1dC!2k2l#dA* 1 iaE dR21~p!dp50,

~45!

2 idA@Rl 21
st ~p!2Rl 21

st ~p21!#2 idA*

3@Rl 11
st ~p!2Rl 11

st ~p11!#

52@ i l ~2p2 l 2dL!1g uu1l#dRl~p!1 i uAstu

3@dRl 11~p!2dRl 11~p11!#1 i uAstu

3@dRl 21~p!2dRl 21~p21!#, ~46!

from which we can determine the eigenvaluel.

2. Numerical method: Two-dimensional matrix continued
fraction

The diffraction groups are coupled in much the same w
as theN ‘‘photon’’ groups @28,29# are coupled. This can be
seen from Eq.~40! where thel th diffraction group is coupled
only to the (l 61)th group. Naturally, we are led to build ou
numerical method upon the method 2D MCF. As an illust
tion, we construct a 2D MCF by whichRl

st(p) can be ob-
tained efficiently from Eq.~40!, given a pair ofuAstu anddL .
A similar but more complex method is developed in Appe
dix A for determining eigenvalues from Eqs.~44!, ~45!, and
0-7
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~46!. To begin with, we introduce, for a given momentu
family p0, a vectorSW l of dimensionD( l )52Nmax2l11, con-
taining all the elements in thel th diffraction group, where
0< l< l max52Nmax. Here, we have truncated the momentu
space atp06Nmax so that a momentum family is closed wit
2Nmax11 members, ranging fromu1,p02Nmax& to u1,p0
1Nmax&.. This approximation holds as long as the mome
tum states beyondp06Nmax remain virtually intact at long
time. In addition, we have limitedl to positive values since
the negative diffraction groups can be derived from the po
tive ones according to Eq.~15!. Let p@n#5p01 l 1n2Nmax

21, wheren is integer.SW l is defined according to

SW l@n#5Rl
st~p@n# !, n51,2, . . . ,D~ l !.

In this definition, we have sought to place each elemen
the l th group intoSW l in the sequence from the bottom left
the top right end along the145° line of the l th group as
shown in Fig. 2. Next, we introduce three matrices:Ml ,l ,
Ml ,l 11

1 , andMl ,l 21
2 . Ml ,l is a diagonal matrix of dimension

D( l )3D( l ) with its diagonal elements being defined as

Ml ,l@n#@n#52 i l ~2p@n#2 l 2dL!2g uu .

Ml ,l 11
1 is a matrix of dimensionD( l )3D( l 11). The ele-

ments ofMl ,l 11
1 are all zero except those defined below:

Ml ,l 11
1 @n#@n#52 i uAstu, Ml ,l 11

1 @n11#@n#5 i uAstu.

Ml ,l 21
2 is a matrix of dimensionD( l )3D( l 21). The ele-

ments ofMl ,l 21
2 are also all zero with the exception of

Ml ,l 21
2 @n#@n#52 i uAstu, Ml ,l 21

2 @n#@n11#5 i uAstu.

The coupled matrix equations are written in terms of th
definitions as

Ml ,lSW l1Ml ,l 21
2 SW l 211Ml ,l 11

1 SW l 115WW 0d l ,0 , ~47!

whereWW 0 is a vector of dimensionD(0) defined as

WW 0@n#5W~p@n# !.

To solve Eq.~47!, we introduce a forward ansatz forl .0,

SW l52Ql
1Ml ,l 21

2 SW l 21 , ~48!

whereQl
1 is a square matrix ofD( l )3D( l ). Ql

1 is found,

by replacingSW l 11 in Eq. ~47! with 2Ql 11
1 Ml 11,l

2 SW l @derived
from Eq. ~48!#, to satisfy the recursive relation

Ql
15~Ml ,l2Ml ,l 11

1 Ql 11
1 Ml 11,l

2 !21. ~49!

Because of the momentum cutoff, the diffraction groups
yond l 5 l max must all vanish. In particular,SW l max1150. With

this consideration, we find from Eq.~47! with l 5 l max that
SW l max

52(Mlmax,lmax
)21Mlmax,lmax21

2 SW lmax21, which, compared

with Eq. ~48!, gives rise to
05381
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Ql max

1 5~Ml max,l max
!21. ~50!

Hence, all the matricesQl
1 with 0, l , l max can be obtained

from Eq. ~49! recursively, starting from Eq.~50!. For l 50,
we have from Eq.~47! that

M0,0SW 01M0,21
2 SW 211M0,11

1 SW 15WW 0 . ~51!

But since

SW 152Q1
1M1,0

2 SW 0 ~52!

and SW 215SW 1* according to Eq.~15!, we find from Eq.~51!
that

SW 05~M002M0,1
1 Q1

1M1,0
2 2M0,21

2 Q1* M1,0
2* !21WW 0 .

OnceSW 0 is determined, we can solve forSW 1 from Eq. ~52!.
The elements inSW 1 representR11

st (p) of a particular momen-
tum family. In order to perform the integral in Eq.~39!, we
need to construct a complete set ofR11

st (p). This is done by
repeating the same steps for all the momentum families
summary, we have developed an algorithm that allows u
evaluate the left side of Eq.~39!, given a pair ofuAstu and
dL . This algorithm together with a root searching progra
@34,35# will enable us to determineuAstu, dL , and all the
Rl

st(p) simultaneously.

IV. DISCUSSION

A. Lasing conditions and collective instabilities of the trivial
steady state

It is well known from conventional laser theory that la
ing takes place when the linear gain exceeds the cavity l
To study the lasing condition, we chooseuAstu as the pertur-
bation parameter and expand bothR1

st(p) and dL perturba-
tively as

R1
st~p!5R1

st(0)~p!1R1
st(1)~p!1•••,

dL5dL
(0)1dL

(1)1•••.

We seek from Eq.~40! a solution correct to the first order i
uAstu,

R11
st(1)~p!5 i uAstu

W~p!2W~p21!

g uu1 i ~2p212dL
(0)!

, ~53!

which, combined with Eq.~39!, gives rise to the threshold
condition

2 idL
(0)2 idC1k2aE W~p!2W~p21!

g uu1 i ~2p212dL
(0)!

dp50.

~54!

Note that Eq.~54! is the same as Eq.~34! when l[l r

1 il i in Eq. ~34! is substituted byl r50 and l i52dL
(0) .

This observation represents the simple fact that the ste
0-8
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THEORY OF A COLLECTIVE ATOMIC RECOIL LASER PHYSICAL REVIEW A63 053810
states that can grow from noise must start from unsta
trivial steady states. Thus, steady-state lasings and colle
instabilities share the same parameter space. To gain fu
insight, we organize the real part of Eq.~54! in the form

g uu E W~p11/2!2W~p21/2!

g uu
21~2p2dL

(0)!2
dp5

k

a
, ~55!

which simply means that the gain equals the loss at
threshold. However, the left side of Eq.~55! can now be
identified as the probe absorption spectrum of RIR@9,10#,
contributed by the Raman transitions betweenu1,p11/2& and
u1,p21/2& of different p. The dominant contributions to th
spectrum must come from those Raman transitions whop
are aroundpR[dL

(0)/2, where the two-photon resonance co
dition or equivalently the energy conservation law is sa
fied. Note that here the momentum of the initial stateu1,p
11/2& is greater than that of the final stateu1,p21/2& by one
momentum unit~meaningk11k2). Such a process, consis
tent with the momentum conservation law, must corresp
to the simultaneous emission of a probe~forward! photon
and absorption of a pump~backward! photon. Clearly, in
order for the probe to be amplified, the population in t
stateu1,p11/2& must exceed that in the stateu1,p21/2&. If
dL

(0)50, pR will be zero; becauseW(p) is symmetric with
respect top50, the population of the negative momentu
will balance that of the positive momentum.@Unless indi-
cated otherwise,W(p) is assumed to be a Gaussia
distribution of momentum width DpD : W(p)
5e2(p/DpD)2

/ApDpD .# As a result, the probe field can b
neither amplified nor absorbed whendL

(0)50. However, if
dL

(0),0, pR will be aligned in the negative momentum r
gion where, by inspection of the atomic momentum distrib
tion, the population atp11/2 is always larger than that a
p21/2, that is,W(p11/2)2W(p21/2).0, and vice versa
if dL

(0).0 @10#. As a result, we expect that the probe abso
tion spectrum will change from gain to absorption as
probe is tuned from the red side to the blue side of the pu
field as shown in Fig. 3. Thus, to produce the steady-s
CARL field, dL

(0) must be negative. This discussion clea
demonstrates that both the RIR and CARL share the s
gain mechanism. The difference is thatdL

(0) is a preset value
in the RIR but is fixed by the threshold condition in th
CARL.

SincedC can be controlled externally in the CARL, w
calculate the threshold valuea as a function ofdC for sev-
eral DpD and plot the results in Fig. 4. Note that sincea is
directly proportional to the atomic density any discussio
abouta can be equally passed onto the atomic density. F
ure 4 indicates that for a givenDpD laser action takes plac
only when the CARL is operated at parameters above
corresponding boundary. It has several features that ca
be accounted for by the spectroscopic features presente
Fig. 3. First, for a given curve, the ratiok/a must be less
than the peak gain and, as a consequence,a must exceed a
minimum threshold value determined by the ratio ofk to the
peak gain. Second, the peak gain decreases withDpD as a
result of Doppler broadening, and this explains why t
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minimum thresholda of each curve increases withDpD .
Finally, the threshold valuea decreases withDpD in the
parameter region of sufficiently large positivedC . This is
because large positivedC corresponds to large negativedL

(0) ,
where the momentum states of largerDpD are more popu-
lated than those of smallerDpD and consequently requir
smallera to create population inversion. Analytical expre
sions for the threshold values exist for momentum distrib
tions of Lorenzian type, and are presented in Appendix A

FIG. 3. The absorption spectrum, defined as the left side of
~55!, produced withg uu51 for ~a! the monoenergetic atomic mo
mentum distribution,~b! the Gaussian distribution ofDpD50.5,
and ~c! the Gaussian distribution ofDpD51.

FIG. 4. The lasing or collective instability boundary in th
(a,dC) parameter space for~a! the monoenergetic atomic momen
tum distribution,~b! the Gaussian distribution ofDpD50.25, and
~c! the Gaussian distribution ofDpD50.5. Additional parameters
areg uu51 andk52.
0-9
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B. Stationary steady states

In this subsection, we present and discuss the nume
results performed in the parameter domain where ste
states are stationary. In our study below, we will oft
present examples involving the monoenergetic atomic m
mentum distribution

W~p!5d~p!, ~56!

because it models quite well the dynamical behaviors of
CARL system below the subrecoil temperature. The fact t
this distribution vanishes everywhere except atp50 means
that we have to consider only a single momentum fam
z(p050), leading to a significant saving in computation
time. A distribution like Eq.~56! also means that an arbitrar
element in a diffraction group can now be projected onto
basis composed of Dirac-d functions

Rl~p!5(
m

Rl~m!d~p2m!, ~57!

wherem is an integer. This expansion shifts the dynami
variables fromRl(p) to Rl(m), whose equations, apart from
the pumping term which now becomes2g uu@Rl(m)
2dm,0d l ,0#, are the same as those forRl(p). The field equa-
tion also remains the same except that the integration is
substituted by a sum overm: (mR11(m).

Consider a system operating at the parameters that
rise to the threshold boundaries of Fig. 4. Figure 5 sho
several curves ofuAstu as a function ofdC , each of which is
produced by a uniqueW(p) but under the same conditio
that a510. It indicates that for a givenDpD , the steady-
state laser output is indeed bounded between two thres
valuesdC , determined by the intercept of the linea510

FIG. 5. The steady-state field moduleuAstu as a function ofdC

for ~a! the monoenergetic atomic momentum distribution,~b! the
Gaussian distribution ofDpD50.25, and~c! the Gaussian distribu
tion of DpD50.5. Additional parameters areg uu51, k52, anda
510.
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with the curve of the correspondingDpD in Fig. 4. Here,
uAstu increases gradually withdC until it reaches a maximum
beyond which it descends to zero in a rather dramatic fa
ion, and, for a fixeddC , uAstu decreases with increasin
DpD . Figure 6 displays the corresponding curves ofdL as a
function ofdC . It shows that the relationship betweendL and
dC is quite linear for the situations of largeDpD but fairly
nonlinear for the case of a monoenergetic distribution. T
nonlinearity is linked to the fact that the latter maintains
higher steady-state intensity than the former.

To illustrate how the steady state is reached in time,
consider, as an example, the state at the peak of the curv~a!
in Fig. 5, wheredC51.21. This state, when calculated by th
2D MCF, is found to have steady-state values ofuAstu
51.076 anddL522.21. The field moduleuAu as a function
of time is shown in Fig. 7~a!, indicating that indeeduAu ap-
proaches the steady-state valueuAstu51.076, after a short
period of oscillations following an initial growth. Periodi
structures, implied in Eq.~36!, are also evident in both the
real and imaginary parts ofA at long time, as displayed in
Fig. 7~b!. The period measured from Fig. 7~b! matches the
~angular! frequency shift ofudLu52.21 at the steady state
Here, the initial growth rate is determined by the real part
the positive eigenvalue governed by Eq.~34!. A general
trend is that the closer to the threshold points, the slower
initial growth rate, and hence the longer the time delay
fore arriving at the steady state. In this example, the ste
state is approached in oscillations, but it can also be reac
monotonically~not shown!. It is the interplay between the
eigenvalues of the trivial steady state and those of the n
trivial steady state that decides the manner by which
system reaches the steady state.

The growth of the CARL signal is accompanied simult
neously by amplification of the matter waves at differe

FIG. 6. dL as a function ofdC for ~a! the monoenergetic atomic
momentum distribution,~b! the Gaussian distribution ofDpD

50.25, and~c! the Gaussian distribution ofDpD50.5, under the
same parameters as in Fig. 5.
0-10
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THEORY OF A COLLECTIVE ATOMIC RECOIL LASER PHYSICAL REVIEW A63 053810
momentum side modes. It is thus interesting to examine
CARL problem from the perspective of atom optics. For t
monoenergetic atomic beam,R0(p)5(mR0(m)d(p2m),
wherem can be regarded as the mode number, and the
mentum distribution is substituted by the mode distribut
functionR0(m). Figure 8 represents a distribution ofR0

st(m)
corresponding to the parameters of Fig. 7. It shows that
population, originally all at the modem50 @R0(m)5dm,0#,
is now being transferred to several momentum side mo
Note that the distribution shows a considerable asymm
with more modes being excited on the negative than on
positive momentum side. The main signature of the asym
try is the development of a negativedL at which the two-
photon resonance is favored for the atoms of negative
menta.

Figure 9 illustrates the time process during which vario
modes are populated at the expense of them50 mode. The
initial growth rate of each side mode is different. A gene
trend is that the smaller the mode numberumu, the faster the
growth rate. The number of modes with significant popu
tions is in proportion to the strength of the CARL signa
This can be explained from the perspective of perturba
theory. The coupling between any two adjacent mode
accomplished via the field amplitudeA. As a result, the

FIG. 7. ~a! The field moduleuAu and ~b! the real~solid! and
imaginary~dashed! parts ofA as a function of time for the monoen
ergetic momentum distribution. The parameters aredC51.21, g uu
51, k52, anda510. The initial condition consists ofA50.001,
andRl(m)5d l ,0dm,0 .
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larger the amplitudeA, the more diffraction groups, o
equivalently the more modes, are needed in order to prod
an accurate description of the system.

The concept of momentum mode is applicable only
momentum distributions of extremely narrow width. Illu
trated in Fig. 10 are the steady-state momentum distributi
corresponding toW(p) of width ~a! DpD50.25 and ~b!
DpD50.5 while the remaining parameters are the same a
Fig. 7. When DpD50.25, the mode structure, althoug
broadened compared to Fig. 8, is still discernible. This is
contrast toDpD50.5 where the mode structure is alrea
difficulty to recognize. The fact that a matter wave of ve
cold atoms can be described by the superposition of diffe
momentum modes lays the foundation for regarding CA
as a parametric wave mixing process involving both opti
and atomic waves.

FIG. 8. The distribution of atomic populationR0(m) at different
momentum modesm under the parameters of Fig. 7.

FIG. 9. The time evolution of~a! R0(0), ~b! R0(21), ~c!
R0(11), ~d! R0(22), ~e! R0(12), and ~f! R0(23), produced
with the parameters of Fig. 7.
0-11
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C. Instabilities of steady states

In this subsection, we shift our focus to the parame
space where the steady states are unstable. The linear s
ity analysis is carried out using the algorithm outlined
Appendix B. It can be shown that, ifl is an eigenvalue of
Eqs.~44!, ~45!, and~46!, l* will also be an eigenvalue of th
same equations with its eigenfunctions being the comp
conjugates of those forl. In dealing with such paired eigen
values, we keep only the eigenvalue with the positive ima
nary part without loss of generality. Further, we label t
eigenvalues (ln , n51,2,3, . . . ) in thesequence of decreas
ing real parts of the eigenvalues. Note that, since ther
always al50 eigenvalue,l50 will not be part of the se-
quence for simplicity. Our search for instabilities begins w
a stable state corresponding to the point wheredC50, on the
curve~a! of Fig. 5. The largest four eigenvalues of this sta
are l1520.4611.22i , l2520.8212.23i , l3521.08
13.65i , andl4 521.3015.22i , and the time evolution of
uAu is depicted in Fig. 11~a!.

First, we keep all the parameters the same while gradu
increasinga. As a increases, the steady-state intensity
creases witha , and, at the same time, it is reached in osc
lations of better defined period. An example in whicha
525 is shown in Fig. 11~b!. A well-defined frequency of
transitory oscillations is often an indication that the seco
eigenvalue is much smaller than the first eigenvalue. An
amination of the eigenvalues indicates thatl1520.10
12.10i is increased, the second and third ones have dis
peared, and the fourth one has now become the second
with the result thatl2521.4016.62i is much smaller than
l1. Sincel1 can outlivel2 for a long period of time, the
fundamental frequency of the transitory oscillations is dom
nated by the imaginary part ofl1, which is 2.10, in agree-
ment with the measured frequency from Fig. 11~b!.

Note that the real part ofl1 is already very close to zer
whena525. If we continue to increasea, we might be able

FIG. 10. The steady-state atomic momentum distributions
systems withW(p) of width of ~a! DpD50.25 and~b! DpD50.5.
The remaining parameters are the same as those of Fig. 7.
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to change the real part ofl1 from negative to positive. This
turns out to be true. For example, whena528, l150.02
12.20i andl2521.4416.89i . The time evolution ofuAu is
shown in Fig. 11~c!, where the instability is manifest in th
form of self-pulsing with a frequency close to 2.20, th
imaginary part ofl1. As a increases further, it seems, fo
the parameters we tested, thatl1 continues to be much large
than l2 so that there is no competition between the tw
eigenvalues; the instability continues to exist in the form
self-pulsing but with an increased frequency and amplitu

Next, we keep all the parameters the same as in Fig. 1~a!
while gradually reducingg uu . As g uu decreases, the first fou
eigenvalues, instead of either vanishing or moving far ap
as in the case of increasinga, actually get closer to each
other as shown in Fig. 12. This closeness among differ
eigenvalues is believed to be the cause of the rather irreg
transitory development toward the steady state shown in
13~a! where g uu50.5. If g uu is reduced to 0.4,l150.02
10.84i becomes positive while the rest are still negativ
The time evolution ofuAu@Fig. 13~b!# displays again a self-
pulsing form but with rather distorted cycles. Ifg uu is
dropped to 0.3 bothl150.1310.65i andl250.0312.5i be-
come positive. Under this condition, the self-pulsing stru
ture surprisingly collapses into an extremely irregular fo
@Fig. 13~c!#, reminiscent of the complicated patterns report
by Bonifacio and co-workers@2#.It appears, for the param
eters tested, that the irregular dynamical pattern pers
wheng uu is below 0.3~not shown!. It is important for atom
optics that, because of the coupling between optical

f

FIG. 11. uAu as a function of time for~a! a510, ~b! a525, and
~c! a528 with dC50. The remaining parameters along with initi
conditions are the same as in Fig. 7.
0-12
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THEORY OF A COLLECTIVE ATOMIC RECOIL LASER PHYSICAL REVIEW A63 053810
atomic waves, the matter waves exhibit similar dynami
features as indicated by the time evolution of the populat
of mode m521 in Fig. 14. In what follows, we give an
estimation of the mean longitudinal speed of sodium ato
corresponding tog uu50.3. The unit ofg uu is v2r , which is
about 4v r . For sodium atoms,v r is about 9.483104s21.

FIG. 12. The real parts of the eigenvalues as functions ofg uu
whendC50. The remaining parameters are same as in Fig. 7.

FIG. 13. uAu as a function of time forg i50.5~a!, 0.4 ~b!, and
0.3 ~c! with dC50. The remaining parameters along with initi
conditions are the same as in Fig. 7.
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This leads tog uu51.1373105 s21 or equivalently a transien
time of 8.8ms. If the diameter of the pump field is 10mm,
the mean longitudinal speed will be about 113 cm/s, which
faster than the Doppler limit 30 cm/s, and is, of course, w
above the recoil limit 3 cm/s. Since a mean longitudin
speed below 113 cm/s can be obtained by a variety of c
ing mechanisms, we conclude that the irregular dynamic
accessible to current experiments.

V. CONCLUSION

In this paper, we formulated a quantum-mechani
CARL theory that treats both internal and external degree
atomic freedom quantum mechanically but regards laser l
as a classical field obeying Maxwell’s equations. In formi
the theory, we developed an approach in which matter eq
tions were organized in terms of the variables derived fr
the concepts of momentum families and diffraction grou
This approach has the advantage of transforming the ma
equations into forms that allow a straightforward numeri
implementation of 2D MCF.

Our 2D MCF seeks to achieve computational efficien
with two layers of reduction of the density matrix elemen
in momentum space. First, we divide the total moment
space into a limited number of momentum families
smaller space. Next, we divide each family into differe

FIG. 14. R0(21) as a function of time forg i50.5~a!, 0.4 ~b!,
and 0.3~c! with dC50. The remaining parameters and initial co
ditions are the same as in Fig. 7.
0-13



ta
is
v
ta

tim
e
om
il
u
th
o

ne
he
th
a
th
b

ng

L

th
L

at
i

oi
in
a

y-
th

m
o
b

lity

th
of
ha
r
ng
lo
le
te

lly
p

a
W

a
ot

ul
fo
n-
he

rch

-

is

ed
ar

H. Y. LING, H. PU, L. BAKSMATY, AND N. P. BIGELOW PHYSICAL REVIEW A63 053810
diffraction groups of dimension much smaller than the to
number of density matrix elements of a single family. In th
way, the matrices to be manipulated in the 2D MCF ha
dimensions much smaller than the dimension of the to
space, leading to tremendous savings in computational
for systems with a large number of momentum side mod

One of the reasons that the CARL appears different fr
RIR is that the CARL emphasizes the transient growth wh
RIR focuses on the amplification at long time. Since o
theory covers both time domains, we are likely to unify bo
theories. Indeed, we found that collective instabilities
CARL develop in the same parameter space where the li
gain of RIR exceeds the cavity loss. This clearly establis
that the gain mechanism of both CARL and RIR has
same origin. In RIR, there is no cavity and the gain is re
ized by tuning the probe to the red side of the pump. In
CARL, the gain is also achieved by a redshift of the pro
relative to the pump~meaning a negative frequency detuni
dL

(0)) except that this redshift is produced dynamically.
In addition to the frequency and amplitude of the CAR

signal, we also examined the steady-state distributions
matter waves. Much of the recent enthusiasm about
CARL stems from its applications in atom optics. The CAR
can be regarded as a parametric amplifier of coherent m
waves in which the injected mode of the matter wave
converted to the matter waves of side modes. From this p
of view, we have in effect presented a study of wave mix
involving many modes of matter waves and two optic
waves.

The CARL model is inherently rich and complex in d
namics because, unlike in ordinary laser theory, where
momentum is treated as a dummy variable, the momentu
the CARL becomes a dynamical variable. The number
dynamical variables increases with the number of modes
ing excited. In this paper, we performed a linear stabi
analysis of a limited number of nontrivial steady states. W
found that instabilities can manifest themselves either in
form of self-pulsings of well-defined period or in the form
irregular pulses. It seems, from our limited experience, t
the former occurs whena is sufficiently large while the latte
emerges when the transit interaction time is sufficiently lo
It is important for atom optics that the matter waves deve
similar instabilities. If we operate the CARL in the unstab
parameter region, we can create atomic waves whose in
sities are modulated in time either periodically or chaotica
These modulated matter waves may find use in future ap
cations.

As a future study, we plan to extend this work to situ
tions where trapped Bose condensates are employed.
also plan to investigate the possibilities of using 2D MCF
a numerical tool for studying the statistical properties of b
matter and light waves.
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APPENDIX A: THRESHOLD CONDITION

In this Appendix, we calculate the threshold valuea for
atomic momentum distributions of Lorenzian type

W~p!5
DpD

p

1

p21DpD
2

. ~A1!

By inserting Eq.~A1! into Eq. ~54! and performing contour
interactions, we arrive at two relations

k1ag uu8
4dL

(0)

@g uu8
21~11dL

(0)!2#@g uu8
21~12dL

(0)!2#
50,

~A2!

2dL
(0)2dC2a

2g uu8
212~12dL

(0)2!

@g uu8
21~11dL

(0)!2#@g uu8
21~12dL

(0)!2#
50,

~A3!

where

g uu85g uu12DpD .

By combining Eqs.~A2! and~A3!, we find a quadratic equa
tion for dL

(0) ,

~k12g uu8!dL
(0)212g uu8dCdL

(0)2k~11g uu8
2!50.

By solving the quadratic equation, we arrive at

dL
(0)5

2g uu8dC2Ag uu8
2dC

2 1k~k12g uu8!~11g uu8
2!

k12g uu8
, ~A4!

where we keep only the negative root since Eq.~A2! can be
satisfied only whendL

(0) is negative. Given adC , we can first
determinedL

(0) from Eq. ~A4!, and then insert thedL
(0) into

either Eq.~A2! or Eq. ~A3! to obtain the threshold valuea.
The curve~a! of Fig. 4 for the monoenergetic atomic beam
calculated using these formulas withDpD50.

APPENDIX B: LINEAR STABILITY ANALYSIS

In this Appendix, we present a numerical method bas
upon 2D MCF for obtaining eigenvalues from the line
coupled equations~44!, ~45!, and ~46!. To begin with, we
note that if we can express

E dR11~p!dp52 idAC11
1 2 idA* C11

2 , ~B1a!

E dR21~p!dp52 idAC21
1 2 idA* C21

2 ~B1b!

we can then combine Eqs.~B1! with Eqs. ~44! and ~ 45! to
form an eigenvalue equation,
0-14
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f ~l!5@ i ~dL1dC!2k2l2aC11
1 #3@2 i ~dL1dC!2k2l

1aC21
2 #1a2C21

1 C11
2 50,

where C61
1 and C61

2 are functions ofl to be determined
from Eq. ~46!. To yield the form of Eqs.~B1!, we need to
divide each dRl(p) into two componentsdRl

1(p) and
dRl

2(p) according to

dRl~p!52 idAdRl
1~p!2 idA* dRl

2~p!.

The equations fordRl
1(p) and dRl

2(p) are found, from Eq.
~46!, to satisfy, respectively,

Rl 21
st ~p!2Rl 21

st ~p21!

52@ i l ~2p2 l 2dL!1l1g uu#dRl
1~p!1 i uAstu

3@dRl 11
1 ~p!2dRl 11

1 ~p11!#1 i uAstu

3@dRl 21
1 ~p!2dRl 21

1 ~p21!# ~B2!

and

Rl 11
st ~p!2Rl 11

st ~p11!

52@ i l ~2p2 l 2dL!1l1g uu#dRl
2~p!1 i uAstu

3@dRl 11
2 ~p!2dRl 11

2 ~p11!#1 i uAstu

3@dRl 21
2 ~p!2dRl 21

2 ~p21!#. ~B3!

The connection between the two components and all the
efficients is accomplished through the following integratio

C11
1 5E dR11

1 ~p!dp, C11
2 5E dR11

2 ~p!dp,

~B4a!

C21
1 5E dR21

1 ~p!dp, C21
2 5E dR21

2 ~p!dp,

~B4b!

according to Eq.~B1!. Both Eq.~B2! and Eq.~B3! show that
dRl

m(p), where m51 and 2, are coupled only to the (l
61)th diffraction groups and therefore can also be solved
2D MCF. However, this 2D MCF is more complex than th
presented in Sec. III. In the latter case, we can take adv
tage of Eq.~15! to limit the diffraction groups tol>0. This
is no longer the case here since Eq.~15! does not hold for
dRl(p). As a result, we have to treat all the diffractio
groups between2 l max and1l max in a uniform manner. With
this in mind, we introduce, for a given momentum familyp0,
two vectorsSW l

1 and SW l
2 of dimensionD( l )52Nmax2ulu11.

These two vectors are used to hold, respectively, all the
mentsdRl

1(p) and dRl
2(p) of a given diffraction groupl.

They are defined as

SW l
m@n#5dRl

m~p@n# !, m51or 2,n51,2, . . . ,D~ l !,
~B5!
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wherep@n#5p01( l 1u l u)/21n2Nmax21. With this defini-
tion, we can now cast Eqs.~B2! and ~B3! into inhomoge-
neous tridiagonal matrix forms

Ml ,lSW l
m1Ml ,l 21

2 SW l 21
m 1Ml ,l 11

1 SW l 11
m 5WW l

m. ~B6!

Ml ,l is a diagonal matrix of dimensionD( l )3D( l ) and its
diagonal elements are defined as

Ml ,l@n#@n#52 i l ~2p@n#2 l 2dL!2g uu2l.

Ml ,l 11
1 is a matrix of dimensionD( l )3D( l 11) whose ele-

ments are all zero except

Ml ,l 11
1 @n#@n#52 i uAstu, Ml ,l 11

1 @n11#@n#5 i uAstu if l>0,

and

Ml ,l 11
1 @n#@n#5 i uAstu, Ml ,l 11

1 @n#@n11#52 i uAstu if l ,0.

Ml ,l 21
2 is a matrix of dimensionD( l )3D( l 21) whose ele-

ments are all zero except

Ml ,l 21
2 @n#@n#52 i uAstu,

Ml ,l 21
2 @n#@n11#51 i uAstu if l .0,

and

Ml ,l 21
2 @n#@n#5 i uAstu,

Ml ,l 21
2 @n11#@n#52 i uAstu if l<0.

Finally, WW l
m are vectors of dimensionD( l ) defined as

WW l
1@n#5Rl 21

st ~p@n# !2Rl 21
st ~p@n#21!,

WW l
2@n#5Rl 11

st ~p@n# !2Rl 11
st ~p@n#11!.

To solve Eq.~B6!, we introduce a forward ansatz,

SW l
m52Ql

m1Ml ,l 21
2 SW l 21

m 1CW l
m , ~B7!

whereQl
m1 is a matrix of dimensionD( l )3D( l ), andCW l

m is
a vector of dimensionD( l ), both of which are unknown
ReplacingSW l 11

m in Eq. ~B6! with Eq. ~B7! for l 5 l 11, and
comparing the result with Eq.~B7!, we find the following
recursive relations:

Ql
m15~Ml ,l2Ml ,l 11

1 Ql 11
m1 Ml 11,l

2 !21, ~B8a!

CW l
m5Ql

m1~WW l
m2Ml ,l 11

1 CW l 11
m !. ~B8b!

The starting values for the recursive relations are determi
by the boundary condition thatSW l max11

m 50W. By inserting

SW l max11
m 50W into Eq.~B6! for l 5 l max and comparing the resul

with Eq. ~B7!, we find that

Ql max

m1 5~Ml max,l max

m !21, ~B9a!
0-15
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CW l max

m 5Ql max

m1 WW l max

m . ~B9b!

As a result, all the matricesQl
m1 and the vectorsCW l

m with
l , l max can be obtained from Eqs.~B8! recursively, starting
from Eqs.~B9!.Finally, all the vectorsSW l

m with l . l min can be
derived according to Eq.~B7! in a forward substitution, start
ing from
s

.

nd

v.

ys

L.

ca

y

ys

A

P
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SW l min

m 5
WW l min

m 2Ml min ,l min11
1 CW l min11

m

Ml min ,l min
2Ml min ,l min11

1 Ql min11
m1 Ml min11,l min

2
,

which is obtained by simultaneously solving Eq.~B7! with
l 5 l min11 and Eq.~B6! for l 5 l min , keeping in mind the
boundary conditionSW l min21

m 50W. By repeating the steps fo

each momentum family, we can constructdR61
1 (p) and

dR61
2 (p), which are used to constructC61

1 andC61
2 .
and

er,

C.
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