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Theory of a collective atomic recoil laser

H. Y. Ling
Department of Chemistry and Physics, Rowan University, Glassboro, New Jersey 08028

H. Pu
Optical Science Center, The University of Arizona, Tucson, Arizona 85721

L. Baksmaty and N. P. Bigelow

Department of Physics and Astronomy and Laboratory for Laser Energetics, The University of Rochester, Rochester, New York 14627

(Received 7 September 2000; published 17 April 2001

We perform a study of a collective atomic recoil la$€ARL) that goes beyond the initial growth period.

The study is based on a theory that treats both internal and external degrees of atomic freedom quantum
mechanically but regards the laser light as a classical field obeying Maxwell’'s equations. We introduce the
concepts of momentum families and diffraction groups and organize the matter wave equations in terms of
diffraction groups. The steady-state lasing conditions are discussed in connection with the probe gain in the
recoil-induced resonances. The nontrivial steady states and the linear stability analysis of the steady states are
both carried out by the method of two-dimensional continued fractions. Both stable and unstable nontrivial
steady states are calculated and discussed in the context of regarding the CARL as multiwave mixing involving
many modes of matter waves and two optical fields.
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[. INTRODUCTION enhances the atomic density grating through its interference
with the opposing wave. Thus, both the CARL and RIR
The collective atomic recoil las€CARL) was proposed should share the same gain mechanism as pointed out by
and studied by Bonifacio and collaboratdr$—5] as an Berman[12].
atomic analog of the free electron laser. In the Bonifacio CARL theories can be broadly divided into semiclassical
model, two-level atoms are subject to two counterpropagatand quantum-mechanical ones, depending on how the center-
ing fields: a pump field from an external source and a sponef-mass motion is treated. The CARL theory of Bonifacio
taneously generated CARL sign@robe field supported by et al.[1-5] was developed by casting the Heisenberg equa-
a ring cavity. Essential to the CARL operation is the positivetions into thec-number form for the expectation values of
feedback between the probe signal and the atomic densitjre relevant operators. This approach is semiclassical since
grating, resulting from the modulation of the standing wavethe evolution of atomic momentum and position essentially
created by the probe and pump fields. An increased probt®llows Newton’s second law. This approximation holds as
field can increase the amplitude of the standing wave antbng asApp>7k, wherezk is the momentum of a single
thereby enhance the strength of the atomic density gratingghoton, andApp is the width of the Gaussian momentum
the enhanced atomic density grating, in turn, can backscattelistribution. For atoms withh pp <7k, the de Broglie matter
the pump field more effectively off the grating into the probe wavelength exceeds that of the field and atoms can no longer
field. These two processes go hand in hand, much like theive considered as localized classical particles moving under
counterparts in the free-electron laser, leading to a runawathe influence of the electromagnetic fields. One must then
amplification of the probe field. Experimental efforts haveseek a quantum-mechanical approach in which the center-of-
been made by Lippeét al.[6] and by Hemmeet al.[7], but  mass motion is also treated quantum mechanically. This is
the physical origin of the probe gain observed in the hotprecisely the method used by Moore and Mey$it8] to
atoms by these two groups, and, in particular, its connectioaddress the matter wave aspect of the CARL operation and
with the CARL mechanism, have remained controvefsial by Berman[12] to make a comparison between RIR and the
Earlier, Guoet al.[9,10] studied recoil-induced resonance CARL.
(RIR) under the same atom-field configuration but without In this paper, we perform a comprehensive study that goes
the ring cavity. A probe gain was found when the probe isbeyond the initial period of growth for a CARL model con-
tuned on the red side of the pump frequency and was lategisting of ultracold atoms and far-off-resonant fields. The
observed experimentally by Courtoét al. [11]. This gain  goal is to make the CARL theory nearly as comprehensive as
was attributed to momentum redistribution among atoms ofts counterpart in a conventional laser system. The steady
different momentum subgroups and could essentially be acstate in ordinary lasers is achieved by constantly pumping
counted for by the Raman transitions between different mothe atoms to the excited levels. Here, we seek to achieve
mentum states. Since a state in momentum space correteady state by a “pump” mechanism that maintains a
sponds to a plane wave in position space, the populatiosteady flow of cold atoms into and out of the interaction
buildup of a particular momentum state is equivalent to theregion. The pump mechanism is simulated by a decayyjate
growth of the corresponding matter wave, which, in returnwhose inverse can be viewed as a transient interaction time
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[9,10,14,1% and by a source containing a statistical mixturetion also covers the numerical approach based on the 2D

of ground state atomsgFor simplicity, we ignore the atom- MCEF for determining the steady states and their stabilities. In

atom collisiong[16,17] by assuming that the atomic sample Sec. IV, we present and discuss the numerical results along

is sufficiently dilute) with their implications. We show, from the consideration of
This paper will also explore the connection of the CARL the lasing condition, that RIR and the CARL share the same

with atom optics, an area of research focusing on how t@ain mechanism. In addition to the growth of the_ probe field,

manipulate matter waves by optical means. Much of the reWe also discuss the growth of the momentum side modes of

cent interest in the CARL has motivated largely by two fac-the matter waves from the perspective of atom optics. The

tors. First, the recent experimental demonstrations of fourdynamics, including the instabilities, of the CARL signal

wave mixing[18,19 and superradiant Rayleigh scattering will also be discussed. The main results are summarized in

[20] have, to some degree, connections with the CARLSEC: V-

mechanisn{21]. Second, the CARL model can be viewed,

from the perspective of atom optics, as a parametric amplifier

[22,23 for the momentum side modes. This point of view l. THEORETICAL MODEL AND EQUATIONS OF

has largely been explored along the line of how to control the MOTION

quantum-statistical properties of side modes via optical fields \ve consider a CARL system comprised of a CARL sig-
[23,24. In contrast, we focus on both the steady-state angha| supported by a unidirectional ring cavity, a strong pump
dynamical behavior of the side modes. field directed almost opposite to the probe field, and a steady

It must be acknowledged that solving for the steady statefioy of an ultracold atomic beam into and out of the active
is by no means trivial. First, the quantization of the centeregion along a direction normal to the propagation of the
of-mass momentum implies that a single internal energyields. The atomic beam is made of two-level atoms with
level now becomes a momentum continuum. Second, in thigansition frequency,;. The pump field features an ampli-
system, a photon of one direction can be transferred into §,qeF,, a frequencyw,, and a wave number k,, while the
photon of opposite direction by the Raman process involvingyeak probe field is characterized by an amplitéde a fre-
the momentum states of the same internal level. Such a Prjuency w;, and a wave numbek,. The frequencyw, is
cess can cause an infinite number of momentum states to kgqq by the external source white,, although close to the
coupled. Finally, the fact that the loaded atoms are in a Staéavity mode frequency., is determined eventually by the
tistical mixture forces us to adopt the density matrix forma"steady—state condition. Furthermoie,= w,/c, wherec is
ism as our theoretical framework. This introduces a further[he speed of light in vacuum, bl = wc/c, since the probe
complication since each density matrix element is a functiong cavity field. ' ’
of two independent momenta.

In this paper, we make several conceptual advances to
overcome these obstacles. First, we adapt the concept of mo- A. Equations for the atomic variables
mentum family from early studies in both twf5,25 and
three-level systemf26,27 to the CARL model. A momen-
tum family is defined as consisting of all the states that ardonents as
coupled under the coherent interaction. By dividing the total .1 A
momentum space into different momentum families, we can F=|ZFeieattikizy —p emioat=ikez) e o (1)
concentrate on solution of the coupled equations involving 2 2
the same family, whose dimension is typically much smaller
than that of the total space. Next, we divide each momentutiy o the atomic center-of-mass position is treated as an
family into different diffraction groups that are coupled only ~ . R o ] ]
to their immediate neighbors. This lends itself very nicely tooperatorz in ant|C|pat|pn of _Its lnteract|or_1 with uItrqcoId
the method of two-dimensional matrix continued fractions@oms. Note that the field 1 is expanded in termsogfin-
(2D MCP), developed by Caét al. [28] (see also Pt al. stegd (_)fwc_ or w; merely for the purpose of making the
[29]) as a powerful tool for studying 2D laser cooling in a derivation simple. We can do this here becawse wc, and
semi-classical approach. The advantage of this technique 81 are so close to each other that the assumptidf dfeing
evident from the standpoint of computational efficiency since? Slowly varying amplitude remains valid under the expan-
the size of matrices to be inverted in the 2D MCF is limited Sion (1). As in our earlier worK30,31], we choose to work
by the size of the diffraction groups, which is much smallerin the Hilbert space spanned kiyp), wherei is the index of
than the size of the momentum family, and is, of coursethe internal energy ang is the eigenvalue of the compo-
much smaller than the size of the total space. nent of the center-of_-mass_ momentum operadfe restrict

In Sec. Il, we derive the atomic equations of motion in aourselves to a one-dimensional problem alang trace over
way similar to that adopted by Moore and Meyst@] and X andy dlmenS|ons is |rr_1pl|e.d wherever appropriate this
the field equations starting from Maxwell’s equation follow- SPace, the atomic Hamiltonian
ing Berman12]. However, the emphasis of the section is on
the conceptual development of momentum families and dif- 9
fraction groups. In Sec. Ill, we present the steady-state equa- |:|A: 2 f (ﬁgzjﬁi . o~
tions and linearized equations around steady states. This sec- i=12 < 2m

We begin by expanding the total field in terms of its com-

li,p)(p.ildp (2
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is dlagonal while the laser-atom interaction Hamiltonianis the detuning of the pump relative to the atomic transition
HL A= _/.LF in the rotanng wave approx|mat|0n takes the frequency As stated in the |ntr0dUCt|0n we are interested in

simple form
HL_Az—ﬁei“Zt[Elf |2,p+7k){p,1dp+E,
xf |2,p—#k,)(p,1dp|+H.c., (3
where

is the Rabi frequency of thigh field andu,;= (2| /1) is the

the far-off-resonance case. This means that
|AAI>T, v, |0~ wc|,Awp,

wherel is the population decay rate of the excited lewvgel,
the polarization dephasing rate, andvy the Doppler fre-
quency width. Under this condition, we can ignore the ex-
cited population and solve fop,,(p,p’) from Eq. (7) in
terms of the ground state density matrix elements

! El ! E2 !
p21(P,p")~— —p1(p—7iky,p")— —p1(p+7ksy,p’)
An A,
(8

under the so-called adiabatic approximation. Substituting Eq.

atomic transition dipole moment. The evolution of the (8) into Eq.(6), we find that

atomic density matrix operater’ in the Schrdinger picture
obeys

dp’

dt ’ @

inc

i p
h[HP]Jr a0

where @dp’/dt);,. is a shorthand notation for corrections

associated with the finite transit time interaction and the ran-

dpll(prp,)__i(
at

X[p11(p,p")—p{P(p.p")]

E.E7 )
An [p11(p,p" —7i(ki+ky))

p?—p’ ,
S| PuPP) =Y

+i

dom fluctuations due to spontaneous emission and collisions.

We consider first the coherent péitte first term on the right
hand side of Eq(4)]. In terms of the slowly varying density
matrix elements

po1(P.p’)=psi(p,p’)e 2,
(5
p11(P,P")=p1:p.p"),

we find that

2

d , p?—p’
apll(pap )=—i omh p11(P,p")

+i[ETpoa(p+7hky,p") —E1p1a(p,p’ +7ky)]
+i[EZ poa(p—7iky,p') —Eppaa(p,p’ —1iky)]

(6)
and
E ( ’)—_i pz;p/z_A ( r)
gtP2iP.P )= o Al P21(P:P
HiEq[pra(P—AKy,p") = podp,p’ +7Ky)]
HiIEo[ p1a(p+7ksy,p’) = podp,p" —fiky)],
(7
where

Ap=w— 0y

E3E

An

—pu(p+h(kit+ky),p)]+i

X[p11(p,p" +7(ky+Kky))
—pu(p—A(k+ky),p")], 9

where the term associated wifh is introduced phenomeno-
logically to simulate the finite transit time process. Here the
inverse ofy is approximately with the interaction time re-
sulting from atoms entering and leaving the interaction re-
gion, and

Q(p.p")=27kL; *W(p)5(p—p")

represents the momentum distribution of the loaded atomic
sample withL, being the effective interaction length along
the z dimension and

(10)

fj:W(p)d p=1.

Equation(10) corresponds to a Wigner function consisting of
a momentum distribution times a uniform spatial density
[12]. Since the atomic beam is assumed to be normal to the
optical axis, we estimatg), as the ratio of the diameter of
the pump field to the mean longitudinal speed, and approxi-
mateW(p) as the transverse momentum distribution.

B. Momentum families and diffraction groups

The idea of dividing the total momentum space into dif-
ferent families emerged in the study of the momentum dis-
tribution of two-level atoms interacting with a near-resonant
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standing wavé15,25. This approach gained popularity and T
was, in fact, instrumental in the analysis of subrecoil laser m

cooling for three-level systenj26,27]. To be specific, con- (33) - (23 - (13 - 0D - MY - 2D - (I
sider a situation in which two counterpropagating fields with | f |
the same wave numbérinteract independently with the two BB @D 1D — 0D — AD - @H - 6D
transitions in a degenerate atomic system. Le3,p) rep- , : , :

resent the excited momentum state whilgp) and |2,p) |
stand, respectively, for the momentum states of the two de- 3~ @ - Ly ~ @) = @D — @) - 3D
generate ground levels. With an appropriate choice of the | | |
field polarizations, we can assume, without loss of general- .~ _ (_Zfo) _ (_lfo) - 00 — (lfo) -0 - (3,§0) —
ity, that the forward field interacts with tH&)«|1) transi- , : , , , :

tion while the backward field is coupled to th8)« |2) ; i | s z
transition. Because of the momentum conservation, an atom D — 2D = 1) — @D — A&-h — @D - G-D

in |3,p) can only make a transition tdl,p—%k) (|2,p | | | ]
+#k)) by emission of a forwardbackward photon. Con- BB O (LD — O — LD - @D - (D
versely, an atom inl,p—#k) (|2,p+#k)) can only be , : A A
pumped tg3,p) by absorption of a forwar¢backward pho- |
ton. We are thus led to define a momentum fangilypy), 33 - (23 - (1D - 0 — 4H) — @B - G
where —wo<py<+o, to consisting of three members
Ciong homseivcs et the coneren iteracton. " e amily witys,-3. The cutoffmomenta for @ momentum

In our model, the momentum exchange between photon]:s}a“r.nIIy I (o) are defined a8 min=Po~Nma: aN1dPrma,=Po Nmaxin
and atoms is accomplished by a Raman anti-Stokes procesgItS offi (ks kz).
mediated by the effective two-photon fiel#,E5/A,|. An _
atom in|1,p) can make a transition tdp+7%(k, +k,)) by _mentaPma.x_and P min in order t_o_close each momen';um fam-
simultaneous absorption of a CARL photon and emission ofy- In addition, we need to divide €po<#(k; +kj) into L
a pump photon. Conversely, an atom|hp) can make a sub!ntervals so that there is a total numbeiLahomentum
transition to|1,p—7 (K, +k»)) by simultaneous emission of families. (In contrast, in three-level systems, the momentum
a CARL photon and absorption of a pump photon. In thisfamily is closed by itself bupy is truncated according to the
way, an atom initially prepared ifL,p) can end up ir1,p relevant momentum _spat)eAt this point, we associate each
+n#i (K, +k,)), where —s<n<=c, by n such Raman tran- momentum family Wlth a map of a square lattice of length
sitions. Based on this discussion, we define a momenturfi(K1+kz) in a two-dimensional momentum space as shown
family /- (po), where 0<py<7i(k;+k,), to be comprised of N Fig. 1. Situated on a lattice site of coordinater() is the
all the base state§|1,po+n7i(k,+ky)),—=<n<w}. We density matrix elemeni,y(p,p’), where p=po+nf(k,
limit p, to the values between 0 ardk, +ks) for the pur- ~ TKe) and p'=po+mi(ky+k;). The map for / (po
pose of uniqueness because if, for examplg; fi(k,+k,) ~ TAPo) can be produced by shifting the(po) map along
but less than &(k;+k,), the elementl po+nfi(k,+k,))  the +45° direction by a displacement aR2Ap,. It is then
should, in fact, belong te (p4) wherep)=po— 7 (Ky + ko) not difficult to visualize that apo chfinges.from 0 _tdi(kl .
<#i(ky+k,). Clearly, if an atom starts from a base state T K2) the momentum space WI|| be filled W|th_ der_1$|ty matrix
belonging to a familyr (py) it can only recycle among the elements along all th&45_° lines as shown in Fig. 2. Thl_s
states of the same family under the Raman process. Indeela{ittem suggests that we introduce the following expansion
spontaneous emission can cause atoms to move from one +oo
family to another due to the rangom momentum ethgnge in p1(p,p’) =27k L;l > Ri(p)8(p—p’ — (K +ks)),
the process of spontaneous emission. However, this is of no ==
concern here because spontaneous emission is absent from (11)
our model.

As noted in the Introduction, the injected atoms are in
state that is best described by the density matrix formalis
A density matrix elemenpll(pOJrnﬁ(k1+k2),pé+mﬁ(kl . define thelth diffraction group as consisting of all the ele-
J_rkz_)) can tze formed by members fro_m_ two different fami- .\ ts p1(p,p’) in which p—p’—l#%(k,+k,)=0. The
lies if po#po . However, because the injected atoms are aspame of “diffraction group” can be easily understood once

sumed to be spatially ur_1iform, they_ _Iack the coherences b&se transform the matrix elemept(p,p’) into thez repre-
tween the members of different families. Hence, the element§entation

p1a(pot+nhi(ki+ky),po+mi(ky+ky)) in which pg#p|

cannot become different from zero in the course of the evo-

lution. We then need to consider only the density matrix 1 N ai(p—p)2h ,
elements formed by members of the same famjy: pg . In (z1pl12)= 2mh pu(pp)e dpdp’,

a typical numerical calculation, we must define cutoff mo- (12

FIG. 1. A map of the density matrix elements of a single mo-

Avhere the Dirad function serves as a constraint, limiting all
Mhe elements to the- 45° diagonal lines. At this point, we
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T whereP is the macroscopic atomic polarization. A field of
=6 vy m the form given by Eq(1) can only be driven by a polariza-
(33) — (23 — (1Y) —~ 03 — 13 -~ 2} -~ (Y tion of similar form:
YA YA vararea
(32 — (2D — (12 — ) — 1) — 22 -~ G2 P 1 P (oot +ikaz 1 P (oot — Koz (16)
. . . , ; . =|zPe 2T 124 —Poe @2t T 2% 4 c.
2t 22 '
3D = (2 - (1,1) - O1) - 1) — 21 - 3,1
whereP; (i=1,2) are slowly varying amplitudes. Note that
b NN SN  (1=1.2) a y varying ampiitu ’
B0 = (20) = (10 = OO =— (10 = 20 = GO —p we have changed into z because we consider Maxwell's
equation as an average equation|m space. Under the
1=-2""?'>/ / / | / / / slowly varying amplitude approximation, we find
3 = (2-1) = L) - 0-1) -— (A1) - 2-1) - @3-
]=-1"“§">/ : / ; / | / ; / ; / i &El " (?EI ) (,Uz,LLZl k2 w2 2 Cz E (17)
(3¢2) = (22) = (1:2) = (052) - (L) — (22 - (3,2) —4tCc—=ij .
(9t 0z 480ﬁ 2(1)2

Varavavaveave

33+ 231——134~o3i—~-13i~23i~33 L . . .
R A U O A B N The polarization, on the other hand, is an average variable in

A the positionz, and is calculated through the trace over the
FIG. 2. A map of diffraction groups witiN,,,,=3. Note that internal degrees of freedom. These considerations lead to
I max= —min=2Nmax=6, Wherel . and |, are, respectively, the
highest and lowest diffraction group numbers. P=NunlLAz2p'|12)+c.c., (18

which, with the help of Eq(11), can also be written in the

form whereN is the atomic density(z,2|p’|1,z) is linked to the

density matrix element in momentum space by the transfor-
mation

<Z,1|p|1,z>=LZ_12| elltkatio)z f R(p)dp. (13

1 . ,
<2,2|p’|1,2>=mf fpél(p,p’)e'(""”””dpdp’,
In an atomic diffraction experiment in which the incident (19
atomic beam is normal to thedirection, the atomic beam
will be diffracted into different angles corresponding to dif-
ferent values of with a weight proportional tg'R;(p)dp.
The functionsR,(p) satisfy two important relations: first,

which becomes

1
(z,2p'|12)= '“’2tf fpzl (p,p")€PPIZtgpdp
f Ro(p)dp=1, (14 (20)

which represents the population conservation and can be défter Eq.(5) is taken into account. We use E@8) and(11)
rived from Eqgs( 9), (10), and(11) [or later directly from Eq. 0 expressz(p,p’) in terms of the diffraction groups,
(28)]; second,

LB
R_i(p)=R(p+ 1A (ky ko))", (15 parPip)=—2mhL, " 2 Ri(P—iike)
due to the fact thap;;(p,p’)=p;i(p’,p)*. The concept of X o(p—fiky—p' =% (ki +Kz))
the momentum family combined with the concept of the dif- E,
fraction group establishes the conceptual framework for an —2whL; 1 2 R/(p+17iky)

efficient numerical approach to the steady-state problem.

Xo(p+hk,—p' —lAa(ky{+ky)). 21
C. Equations for the fields (p 2= P (kitkz)) @D
We now turn our attention to the evolution of the fields

' In order to yield the polarization in the form of E(L.6), we
starting from Maxwell’'s equation for the total field 4 b 46

only have to retain terms proportional 8p—p’ —7%k,) and
PE 1 5%F 2P 5(p—p’+h!<2). Thi_s means that we keep terms witk 0

=ug—, andl=—1 in the first sum and the terms witk=0 and|
at? =1 in the second sum of E§21). This leads to
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ki +ky)?
h(l 2)

_4 E1
p2a(p,p")=—27hL, 1[A_ARo(p_ﬁk1) Wor = om

E, ) is the two-photon recoil frequency shift. Equations for the
+ 1 Rea(pthiky) | 8(p—p' —7iky) diffraction group are derived, by inserting E@.1) into Eq.
A (9), with the result

—2wﬁL‘1[ER (p+17iky) dR(p)
2 Aa° ? gr = 11(2p=DR(p) +iA*[Ri41(p) ~Ri1(p+1)]
E .
+ A—lR_l(p—hkl) S(p—p' +1ky). (22 +HIA[R_1(p)~Ri_1(p—1)]
A
. _ —y[Ri(p)—W(p) & ol (29)
By combining Eqs(16), (18), (20), and(22), we find
whereA is a new field variable defined as
2Npu21 %
=T TA, Ei1+Ez | Rig(p)dp|, (23 Al E>E;
Ay
2N,LL21 . . .
P,=— A, E,+ Elj Rl(p)dp}, (24)  The equation foA is derived from Eq(27) as
dA )
where Eq.(14) has been used. Inserting E¢83) and (24) a:wcA—'af Ry1(p)dp—«A, (29
into Egs.(17), we turn Eqs(17) into
N2 where
JE, B, - Nuz0,
R T g, Ratpide @5 L
2feqwi A2
By dE; Nuj0, oraa

St ¢, ~iocEi—i mEZJ R.(p)dp, (26)  Note that the same notations are used for the scaled variables
for simplicity. These equations, in the absence of the terms
where associated withc and v, are formally equivalent to those
obtained by Moore and Meyst{é3].
502 Wy~ We .
Ill. STEADY STATES AND STABILITY ANALYSIS
In reaching Eqgs(25) and (26), we have ignored the term
—iNu,0,E/2heoA, from both equations since it repre-
sents a constant frequency shift, and dropping it amounts to The trivial steady state
an adjustment of the pump frequeney by a constant and

A. The trivial steady state and collective instabilities

will therefore not affect the dynamics of the fields. Further, AS'=0,
in reaching Eq.(26), we used the approximation,+ wc RS o) = W(D)
~2w,. At this point, we assume thd, is much stronger 1 (P)=W(p)di,

thanE; and its depletion is ignored. This allows us to treatis found by inspection of Eq€28) and (29) at steady state.

JE;/dz of Eqg. (26) by xE;/c and N by a mean atomic  state, we find

densityn=NLZ A as a means to simulate the result under

the mean field limif5,32 doR.4(p) .
1532 i = 1(2p=1)3R.1(p)+i SATW(p) ~W(p—1)]
dE; | Nu30,
leacEl_lmEZJ R.(p)dp—«E;, (27) —710R4(p), (30)
wherex=c|InR//A, R is the power reflectivity of both input dﬁ:- A— i f R — kSA 1
and output couplers, and is the total length of the ring gt~ 1OcOATia | OR.4(p)dp- KA, @Y

cavity; in the mean field limit the effect of output couplers e
and the free portion of the cavity on the dynamics of theWhere bothsA and 6R,(p) represent infinitesimally small

cavity field can be taken care of in a self-consistent mannegepartures from the corresponding steady-state values. Intro-
ducing the following ansatz involving the eigenvale

D. A summary of the basic equations in scaled form SR 1(p)eM,
We define a unit system in whidi(k; + k) is the unit of SAxeM
momentum, 1b,, the unit of time, andw,, the unit of any ’
frequencies and decay rates, where we transform Eqs(30) and (31) into

053810-6



THEORY OF A COLLECTIVE ATOMIC RECOIL LASER PHYSICAL REVIEW A63 053810

W(p)—-W(p—1) ence similar frequency shifts. Indeed, we find, after 86)
Nty Fi(2p-1)’ (32) s inserted into Eqs(28) and(29), that only if
Ri(p,t)=Ry(p)e!(-2t*9) (38)

?\5A=i5c5A—iaf OR;1(p)dp— kA. (33)  can the time variable be explicitly eliminated. These consid-
erations lead to the coupled nonlinear equations

SR 1(p) =i 5A

Finally, by eliminatingéR. 1(p) from Eg.(33) with the help
of Eq. (32), we arrive at the desired eigenvalue equation i(8c+ o) A% —iaJ R (p)dp—«|AS|=0, (39
meHK_iﬁc_af W<p>—W<p—1>) =0 — Y W(p) & o= —[il (2p—1 = 8) + ¥ IR (p)
Nty +i(2p—1 ' .
! (34 FIASRE 4(p)—REL y(p+1)]

H t t _ t _
The roots off(\)=0 are determined numerically and the HIATI[REL(p) ~RZ4(p—1)], (40

emergence of any roots with positive real parts is an indicayhose roots correspond to the steady-state variables of our
tive of collective instabilities. For the positive roots, we fol- jnterest.

low Moore [13] and apply the Parseval relation of Fourier  Next, in order to perform stability analysis of the steady

transformation to reduce E¢34) to states, we introduce, in terms of small perturbatiaifs
SA*, and 5R(p), the following linearization scheme:
_ ; - — w2Ap3/a— w(\ +y))/2 Stjo—id t+i¢ —i5 t+ipant
f(N)=N+k—idc—am . e D [ A(t)=|AS e "ot id L sae oLt Tidght (41
A*(t):|A5t|ei5Lt*i¢+ SA* ei&,_tfiqse}\t, (42)

X (ei wl2__ e*iw/Z)dw

R|(p,t) — Rist(p)eil (—oLt+ ¢)+ 5R|(p)ei|(—5|_t+zf>)e)\t’
(43

f(N)=N+xk—iéc where\ is the eigenvalue. Substituting Eqg.1) and ( 43)
into Egs.(28) and(29) and keeping terms linear with respect

which, expressed in terms of error functions, becomes

+E \/;i e()\+yi)2/4Ap§)erfc(l )‘+7|_i> to 5A, S6A*, and SR,(p), we arrive at the coupled linear
2 App 2 App equations
: 1N+ oy +i
—e("*7|+.)2/4Ap§erf({§ %) . (35 [i(6 + 50)—K—)\]5A—iaf OR,1(p)dp=0, (49
D
B. Nontrivial steady states [—i(8 +8c)— k—N]SA* +i af 6R_41(p)dp=0,
1. Equations (45
We now seek the nontrivial steady states that both the —iSA[RS (p)— R [(p—1)]—i5A*

CARL signal and matter waves might be able to reach after a
long period of time(From now on, we call nontrivial steady X[RL,(p) =R (p+1)]

states “steady states” for simplicitylt is well known from

— H : 1]
conventional laser theory that the output laser will typically =—[i1(2p=1=680)+ T N]6R(p) +i|A%]

oscillate at a frequen_cy different from the cavity mode fre- X[ S8R+ 1(p)— SR+ 1(p+1)]+i|ASY
guency[33,32. For this reason, we look for the steady-state
CARL field in the form of X[6R—1(p) = R _1(p—1)], (46)
A(t)=|ASe idLt+ie, (36) from which we can determine the eigenvalue
h 2. Numerical method: Two-dimensional matrix continued
where fraction
S =w1— 0, (37 The diffraction groups are coupled in much the same way

as theN “photon” groups[28,29 are coupled. This can be
is the laser frequency relative to the pump frequency and wilseen from Eq(40) where thd th diffraction group is coupled
be determined from the steady-state condition, &ni$ an  only to the (= 1)th group. Naturally, we are led to build our
unknown arbitrary phase. Here, the laser frequency shift numerical method upon the method 2D MCF. As an illustra-
is measured with respect to the pump frequency not the cation, we construct a 2D MCF by whicR{(p) can be ob-
ity frequency because the fieleq. (1)] is expanded around tained efficiently from Eq(40), given a pair of ASY and 4, .
the pump frequency. As a consequence of the shift in thé\ similar but more complex method is developed in Appen-
probe frequency, the matter waves are expected to experiix A for determining eigenvalues from Eq&i4), (45), and
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(46). To begin with, we introduce, for a given momentum Q =M, | )—1. (50)
max’’ ma:

family po, a vectoré of dimensionD (1) =2N,,,—!+1, con- i

taining all the elements in thieh diffraction group, where Hence, all the matrice®;" with 0<1<I ., can be obtained
O0<I<Imax=2Nnax. Here, we have truncated the momentumfrom Eq. (49) recursively, starting from Eq50). For =0,
space apo* Npa, S0 that a momentum family is closed with we have from Eq(47) that

2Npaxt1 members, ranging from1,p0—Npma to |1,p0

+Npmay-- This approximation holds as long as the momen- MO’O§0+ M&,1§,1+Ma+1§1=W0. (51
tum states beyong,* N,ax remain virtually intact at long

time. In addition, we have limitetito positive values since But since

the negative diffraction groups can be derived from the posi- . R

tive ones according to Eq15). Let p[n]=po+!+n—Npax Si=-Q; M S (52
—1, wheren is integer.S is defined according to .. _ _
andS_;=S;] according to Eq(15), we find from Eq.(51)

S[n1=R¥(p[n]),n=1,2,... D). that

In this definition, we have sought to place each element of So=(Mgo—Mg Q7 M1 =My _1QT* M §) ™ W
thelth group intoé in the sequence from the bottom left to . . -
the top right end along the-45 line of the Ith group as ©ONCceSo is determined, we can solve f& from Eq. (52).
shown in Fig. 2. Next, we introduce three matricéd;,, ~ The elements i5; represenRS'y(p) of a particular momen-
M/ ;1. andM;,_;. My, is a diagonal matrix of dimension tum family. In order to perform the integral in E(B9), we
D(1)x D(I) with its diagonal elements being defined as  need to construct a complete setRif;(p). This is done by
repeating the same steps for all the momentum families. In
My [n][n]=—=il(2p[n]—=1—=6L) =¥ summary, we have developed an algorithm that allows us to
L _ _ _ evaluate the left side of Eq39), given a pair of|A] and
M/ ;1 is @ matrix of dimensiorD(l)xXD(I+1). The ele- 5 . This algorithm together with a root searching program
ments ofM fle are all zero except those defined below:  [34,35 will enable us to determingAS], 5, , and all the
RY(p) simultaneously.
M anln]= —i[A%], M, [0+ 100 =A%) e Y
M| |_; is a matrix of dimensiorD(I)XD(l—1). The ele- V. DISCUSSION
ments ofM, |_, are also all zero with the exception of A. Lasing conditions and collective instabilities of the trivial
steady state

- _ _i|pst - _i|ast
Myj-alnlin]=—iA%], My, _y[n][n+1]=iA%. It is well known from conventional laser theory that las-

ing takes place when the linear gain exceeds the cavity loss.
o study the lasing condition, we choo#e®| as the pertur-
bation parameter and expand bdf'(p) and &, perturba-

M|,|§|+Mf|—1§|—1+M|+,|+1§|+1:VV05|,01 (47) tively as

The coupled matrix equations are written in terms of thes
definitions as

. RSI — RSt(O) + RSt(l) ... ,
whereW, is a vector of dimensiol (0) defined as HPY=RETPIFRETR)
. 8, =60+s1+. ...
Wol[n]=W(p[n]).
We seek from Eq(40) a solution correct to the first order in

To solve Eq.(47), we introduce a forward ansatz fbr0, |ASY
§|:_Q|+MI_,I—1§—1, (48 W(p)—W(p—1
RE () =i A b P (3) . (53
whereQ," is a square matrix oD (1)xD(l). Q," is found, yti(2p—1-67)

by replacingS, . ; in Eq. (47) with —Q/", ;M| 1, [derived

hich, bined with Eq(39), gi ise to the threshold
from Eq. (48)], to satisfy the recursive relation whien, combined wi a(39), gives rise to the thresho

condition
+_ IRV E: + — -1
Q' =M =M 1Q My q)) (49) o W(p)—W(p—1)
) ) —io/—idctk—a : oo dp=0.

Because of the momentum cutoff, the diffraction groups be- y+i(2p—1-6)

yond | =12 must all vanish. In particulafslmaxﬂzo. With (54

tpis consideration,ii/veifind fro[n E@47) Wi.th I=Imax that  Note that Eq.(54) is the same as Eq34) when A=\,

Sia M )My S, 1 Which, compared 1)\ in Eq. (34) is substituted by,=0 and\;=—5{?.

with Eq. (48), gives rise to This observation represents the simple fact that the steady
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states that can grow from noise must start from unstable 10
trivial steady states. Thus, steady-state lasings and collective
instabilities share the same parameter space. To gain furthe
insight, we organize the real part of E&4) in the form

W(p+1/2)—W(p—1/2) K
’)/Hf 2 (0)\2 =, (55)
Yit(2p—a.”) @

which simply means that the gain equals the loss at the
threshold. However, the left side of E¢5) can now be
identified as the probe absorption spectrum of RERLJ],
contributed by the Raman transitions betwékp+ 1/2) and
|1,p—1/2) of differentp. The dominant contributions to the
spectrum must come from those Raman transitions whpose
are arounpg= 5{0)/2, where the two-photon resonance con-
dition or equivalently the energy conservation law is satis-

Absorption Spectrum (arb. units)

fied. Note that here the momentum of the initial stgitg 40

+1/2) is greater than that of the final stafep—1/2) by one ' 4 2 o 2 4
momentum unitimeaningk; +k,). Such a process, consis- a‘f’(units ofw,)

tent with the momentum conservation law, must correspond

to the simultaneous emission of a protferward photon FIG. 3. The absorption spectrum, defined as the left side of Eq.

and absorption of a pumgbackward photon. Clearly, in (55, produced withy; =1 for (a) the monoenergetic atomic mo-
order for the probe to be amplified, the population in thementum distribution,(b) the Gaussian distribution afpp=0.5,
state|1,0+ 1/2) must exceed that in the statep—1/2). If ~ and(c) the Gaussian distribution @fpp=1.

89=0, pg will be zero; becaus&V(p) is symmetric with

respect top=0, the population of the negative momentum Minimum thresholda of each curve increases withpp .
will balance that of the positive momenturfUnless indi- ~ Finally, the threshold valuer decreases with\pp in the
cated otherwise,W(p) is assumed to be a Gaussian parameter region of sufficiently large positive . This is
distribution of momentum  width App: W(p) because large positiv&- corresponds to large negativﬁé)),
:e*(p/APD)Z/\/;ApD_] As a result, the probe field can be Where the momentum states of largepp are more popu-
neither amplified nor absorbed whei®=0. However, if lated than those of smallekpp and consequently require

5(L0)<O! pr Will be aligned in the negative momentum re- smaller« to create population inversion. Analytical expres-

gion where, by inspection of the atomic momentum distripy-Sions for the threshold values exist for momentum distribu-

tion, the population ap-+1/2 is always larger than that at tions of Lorenzian type, and are presented in Appendix A.
p—1/2, that is,W(p+ 1/2)—W(p—1/2)>0, and vice versa

if 5(>0 [10]. As a result, we expect that the probe absorp-
tion spectrum will change from gain to absorption as the
probe is tuned from the red side to the blue side of the pumg ]
field as shown in Fig. 3. Thus, to produce the steady-state 204
CARL field, 5 must be negative. This discussion clearly |
demonstrates that both the RIR and CARL share the sami 254 i/
gain mechanism. The difference is thﬁ?) is a preset value
in the RIR but is fixed by the threshold condition in the
CARL.

Since 6c can be controlled externally in the CARL, we . ]
calculate the threshold value as a function ofé: for sev- 1 (b R
eral App and plot the results in Fig. 4. Note that sinees 104 N e
directly proportional to the atomic density any discussions T ~. AR .
abouta can be equally passed onto the atomic density. Fig-
ure 4 indicates that for a givehpp laser action takes place
only when the CARL is operated at parameters above the qo & 5 4 5 s 2 4 Ei s
corresponding boundary. It has several features that can a 5 (units of )
be accounted for by the spectroscopic features presented in © x
Fig. 3. First, for a given curve, the ratio/ must be less FIG. 4. The lasing or collective instability boundary in the
than the peak gain and, as a consequeaceust exceed a (4, 5.) parameter space f¢a) the monoenergetic atomic momen-
minimum threshold value determined by the ratiowdo the  tum distribution, (b) the Gaussian distribution afpp=0.25, and
peak gain. Second, the peak gain decreases Mi{h as a (c) the Gaussian distribution afpp=0.5. Additional parameters
result of Doppler broadening, and this explains why thearey;=1 andx=2.

40

35

4
3
£
[y
3
)
H
¢
A
/3
i’

2
2r)

20
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a(units of o
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FIG. 5. The steady-state field modyk®| as a function ofé. FIG. 6. 6 as a function o for (a) the monoenergetic atomic

for (a) the monoenergetic atomic momentum distributié), the ~ momentum distribution,(b) the Gaussian distribution of\pp
Gaussian distribution of pp=0.25, and(c) the Gaussian distribu- =0.25, and(c) the Gaussian distribution afpp=0.5, under the
tion of App=0.5. Additional parameters argj=1, k=2, anda  Same parameters as in Fig. 5.

=10.

with the curve of the correspondinypp in Fig. 4. Here,
|ASY increases gradually with. until it reaches a maximum,

In this subsection, we present and discuss the numeric@eyond which it descends to zero in a rather dramatic fash-
results performed in the parameter domain where steadyn, and, for a fixedsc, |A®| decreases with increasing
States are stationa_lry. In_ our study below, we will _oftenApD' Figure 6 displays the corresponding curvesspfas a
present examples involving the monoenergetic atomic MOy nction of 5. . It shows that the relationship betwegnand
mentum distribution ¢ is quite linear for the situations of largepy, but fairly

W(p)=48(p), (56 nonlinear for the case of a monoenergetic distribution. The

nonlinearity is linked to the fact that the latter maintains a

because it models quite well the dynamical behaviors of thdrigher steady-state intensity than the former.
CARL system below the subrecoil temperature. The fact that To illustrate how the steady state is reached in time, we
this distribution vanishes everywhere exceppatO means consider, as an example, the state at the peak of the Cairve
that we have to consider only a single momentum familyin Fig. 5, wheres-.=1.21. This state, when calculated by the
I (po=0), leading to a significant saving in computational 2D MCF, is found to have steady-state values |Af!
time. A distribution like Eq(56) also means that an arbitrary =1.076 ands, = —2.21. The field modul¢A| as a function
element in a diffraction group can now be projected onto thef time is shown in Fig. &), indicating that indeedlA| ap-
basis composed of Dirag-functions proaches the steady-state valle|=1.076, after a short
period of oscillations following an initial growth. Periodic
structures, implied in Eq(36), are also evident in both the
real and imaginary parts &k at long time, as displayed in
Fig. 7(b). The period measured from Fig(bf matches the
wherem is an integer. This expansion shifts the dynamical(angulay frequency shift of| 5 |=2.21 at the steady state.
variables fromR,(p) to 93,(m), whose equations, apart from Here, the initial growth rate is determined by the real part of
the pumping term which now becomes y[%R(m) the positive eigenvalue governed by E®4). A general
— dmod o), are the same as those f&y(p). The field equa- trend is that the closer to the threshold points, the slower the
tion also remains the same except that the integration is nownitial growth rate, and hence the longer the time delay be-
substituted by a sum oven: 9%, 1(m). fore arriving at the steady state. In this example, the steady

Consider a system operating at the parameters that giv&tate is approached in oscillations, but it can also be reached
rise to the threshold boundaries of Fig. 4. Figure 5 showsnonotonically (not shown. It is the interplay between the
several curves ofAS! as a function ofs., each of which is  eigenvalues of the trivial steady state and those of the non-
produced by a uniqu&V(p) but under the same condition trivial steady state that decides the manner by which the
that «=10. It indicates that for a giveApp, the steady- system reaches the steady state.
state laser output is indeed bounded between two threshold The growth of the CARL signal is accompanied simulta-
values 5., determined by the intercept of the line=10  neously by amplification of the matter waves at different

B. Stationary steady states

R|<p>=§ 2R (m) S(p—m), (57)
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FIG. 8. The distribution of atomic populati®fy(m) at different
momentum modem under the parameters of Fig. 7.

larger the amplitudeA, the more diffraction groups, or
equivalently the more modes, are needed in order to produce
an accurate description of the system.

The concept of momentum mode is applicable only to
momentum distributions of extremely narrow width. Illus-
trated in Fig. 10 are the steady-state momentum distributions
corresponding tow(p) of width (a) App=0.25 and(b)
App=0.5 while the remaining parameters are the same as in
Fig. 7. When App=0.25, the mode structure, although
broadened compared to Fig. 8, is still discernible. This is in
contrast toApp=0.5 where the mode structure is already
difficulty to recognize. The fact that a matter wave of very
cold atoms can be described by the superposition of different
momentum side modes. It is thus interesting to examine thenomentum modes lays the foundation for regarding CARL
CARL problem from the perspective of atom optics. For theas a parametric wave mixing process involving both optical
monoenergetic atomic beanRy(p) =2 ,R(m)S(p—m),  and atomic waves.
wherem can be regarded as the mode number, and the mo-
mentum distribution is substituted by the mode distribution
functionRy(m). Figure 8 represents a distributionf'(m)
corresponding to the parameters of Fig. 7. It shows that the
population, originally all at the mod@=0 [Ry(m) = 60l 0.8+
is now being transferred to several momentum side modes
Note that the distribution shows a considerable asymmetry
with more modes being excited on the negative than on the
positive momentum side. The main signature of the asymme-éo
try is the development of a negativig at which the two- & (4|
photon resonance is favored for the atoms of negative mo:

Real[Al], Imaginary[A] (units of ®,)
- =

W

1

t (units of Vow,)

FIG. 7. (@ The field module|A| and (b) the real(solid) and
imaginary(dashed parts ofA as a function of time for the monoen-
ergetic momentum distribution. The parameters ége=1.21, vy,
=1, k=2, anda=10. The initial condition consists &&=0.001,
and93,(m)= 6 ompo-

1.04

menta.

Figure 9 illustrates the time process during which various
modes are populated at the expense ofrthe0 mode. The
initial growth rate of each side mode is different. A general
trend is that the smaller the mode numbet, the faster the
growth rate. The number of modes with significant popula-
tions is in proportion to the strength of the CARL signal.

0.2 1

t (units of 1/w,)

(d) m=-2

(e) m=+2

This can be explained from the perspective of perturbation FIG. 9. The time evolution ofa) Ry(0), (b) Re(—1), (c)
theory. The coupling between any two adjacent modes i$ty(+1), (d) Ro(—2), (€) Ro(+2), and (f) Re(—3), produced
accomplished via the field amplitudé. As a result, the with the parameters of Fig. 7.
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FIG. 10. The steady-state atomic momentum distributions of 2 sj
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The remaining parameters are the same as those of Fig. 7.

C. Instabilities of steady states

0 T T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55 60

In this subsection, we shift our focus to the parameter g
t(units of 1/w)

space where the steady states are unstable. The linear stabil-
ity analysis is carried out using the algorithm outlined in  F|G. 11.|A| as a function of time fota) a=10, (b) «=25, and
Appendix B. It can be shown that, ¥ is an eigenvalue of (c) =28 with 5.=0. The remaining parameters along with initial
Eqgs.(44), (45), and(46), \* will also be an eigenvalue of the conditions are the same as in Fig. 7.
same equations with its eigenfunctions being the complex
conjugates of those fox. In dealing with such paired eigen- to change the real part of; from negative to positive. This
values, we keep only the eigenvalue with the positive imagiturns out to be true. For example, when=28, \;=0.02
nary part without loss of generality. Further, we label the+2.20 and\,= —1.44+6.89. The time evolution ofA| is
eigenvaluesX,, n=1,2,3 .. .) in thesequence of decreas- shown in Fig. 11c), where the instability is manifest in the
ing real parts of the eigenvalues. Note that, since there iform of self-pulsing with a frequency close to 2.20, the
always ax =0 eigenvalueh=0 will not be part of the se- imaginary part of\;. As « increases further, it seems, for
quence for simplicity. Our search for instabilities begins withthe parameters we tested, thatcontinues to be much larger
a stable state corresponding to the point whigre0, on the  than A, so that there is no competition between the two
curve(a) of Fig. 5. The largest four eigenvalues of this stateeigenvalues; the instability continues to exist in the form of
are \=-—0.46+1.24, N\,=-0.82+2.23, A3=-1.08 self-pulsing but with an increased frequency and amplitude.
+3.65, and\, =—1.30+5.24, and the time evolution of Next, we keep all the parameters the same as in Fig) 11
|A| is depicted in Fig. 1(). while gradually reducingy| . As vy, decreases, the first four
First, we keep all the parameters the same while graduallgigenvalues, instead of either vanishing or moving far apart
increasinga. As « increases, the steady-state intensity in-as in the case of increasing, actually get closer to each
creases withy , and, at the same time, it is reached in oscil-other as shown in Fig. 12. This closeness among different
lations of better defined period. An example in whiah eigenvalues is believed to be the cause of the rather irregular
=25 is shown in Fig. 1(b). A well-defined frequency of transitory development toward the steady state shown in Fig.
transitory oscillations is often an indication that the secondl3(@ where y;=0.5. If vy is reduced to 0.4\;=0.02
eigenvalue is much smaller than the first eigenvalue. An ex+-0.84 becomes positive while the rest are still negative.
amination of the eigenvalues indicates thet=—0.10 The time evolution of A|[Fig. 13b)] displays again a self-
+2.10 is increased, the second and third ones have disagpulsing form but with rather distorted cycles. H is
peared, and the fourth one has now become the second ordrppped to 0.3 both;=0.13+0.65 and\,=0.03+ 2.5 be-
with the result that ,= —1.40+6.62 is much smaller than come positive. Under this condition, the self-pulsing struc-
\i. Sincel; can outlive\, for a long period of time, the ture surprisingly collapses into an extremely irregular form
fundamental frequency of the transitory oscillations is domi{Fig. 13c)], reminiscent of the complicated patterns reported
nated by the imaginary part of;, which is 2.10, in agree- by Bonifacio and co-workerg2].It appears, for the param-
ment with the measured frequency from Fig(ld)1 eters tested, that the irregular dynamical pattern persists
Note that the real part of, is already very close to zero when v, is below 0.3(not shown. It is important for atom
whena = 25. If we continue to increase, we might be able optics that, because of the coupling between optical and
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FIG. 12. The real parts of the eigenvalues as functionsqpf
when 6c=0. The remaining parameters are same as in Fig. 7

atomic waves, the matter waves exhibit similar dynamical

features as indicated by the time evolution of the population

of modem=—1 in Fig. 14. In what follows, we give an

estimation of the mean longitudinal speed of sodium atoms &’

corresponding toy;=0.3. The unit ofy) is w,,, which |s
about 4w, . For sodium atomse, is about 9.4& 10%s !
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FIG. 13. |A| as a function of time fory,=0.5(a), 0.4 (b), and
0.3 (c) with 50=0. The remaining parameters along with initial
conditions are the same as in Fig. 7.
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FIG. 14. Ro(—1) as a function of time fory,=0.5(a), 0.4 (b),
and 0.3(c) with 5c=0. The remaining parameters and initial con-
ditions are the same as in Fig. 7.

This leads toy;=1.137< 10°s™* or equivalently a transient
time of 8.8 us. If the diameter of the pump field is 30m,

the mean longitudinal speed will be about 113 cm/s, which is
faster than the Doppler limit 30 cm/s, and is, of course, well
above the recoil limit 3 cm/s. Since a mean longitudinal
speed below 113 cm/s can be obtained by a variety of cool-
ing mechanisms, we conclude that the irregular dynamics is
accessible to current experiments.

V. CONCLUSION

In this paper, we formulated a quantum-mechanical
CARL theory that treats both internal and external degrees of
atomic freedom quantum mechanically but regards laser light
as a classical field obeying Maxwell’s equations. In forming
the theory, we developed an approach in which matter equa-
tions were organized in terms of the variables derived from
the concepts of momentum families and diffraction groups.
This approach has the advantage of transforming the matter
equations into forms that allow a straightforward numerical
implementation of 2D MCF.

Our 2D MCF seeks to achieve computational efficiency
with two layers of reduction of the density matrix elements
in momentum space. First, we divide the total momentum
space into a limited number of momentum families of
smaller space. Next, we divide each family into different
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diffraction groups of dimension much smaller than the totalwork at Rowan was supported by a grant from the Research

number of density matrix elements of a single family. In thisCorporation.

way, the matrices to be manipulated in the 2D MCF have

dimensions much smaller than the dimension of the total APPENDIX A: THRESHOLD CONDITION

space, leading to tremendous savings in computational time ] .

for systems with a large number of momentum side modes. In this Appendix, we calculate the threshold vakuefor
One of the reasons that the CARL appears different fronfitomic momentum distributions of Lorenzian type

RIR is that the CARL emphasizes the transient growth while

RIR focuses on the amplification at long time. Since our _ﬂ 1

th . . 4 . W(p)= - (A1)
eory covers both time domains, we are likely to unify both T p?+Apd

theories. Indeed, we found that collective instabilities of

CARL develop in the same parameter space where the linedy inserting Eq.(Al) into Eq. (54) and performing contour

gain of RIR exceeds the cavity loss. This clearly establishefteractions, we arrive at two relations

that the gain mechanism of both CARL and RIR has the

same origin. In RIR, there is no cavity and the gain is real- ! 4509 0
ized by tuning the probe to the red side of the pump. In the KrTay -2 (O 277 072 PO
CARL?/the ggin is 21|SO achieved by a redshift gf thrt)e probe (o™ (L4 S0 M)+ (1= 607 (A2)
relative to the pum@meaning a negative frequency detuning
59) except that this redshift is produced dynamically. 24124 2(1— 502

In addition to the frequency and amplitude of the CARL — 59— 5.—qa U = =0,
signal, we also examined the steady-state distributions of [y(?+ (1+ 82 y*+ (1= 6()2]
matter waves. Much of the recent enthusiasm about the (A3)

CARL stems from its applications in atom optics. The CARL
can be regarded as a parametric amplifier of coherent matt
waves in which the injected mode of the matter wave is i =y +2Ap
converted to the matter waves of side modes. From this point 1= D
of view, we have in effect presented a study of wave mixinggy combining Eqs(A2) and(A3), we find a quadratic equa-
involving many modes of matter waves and two opticalijgy for 5(|_0)’
waves.

The CARL model is inherently rich and complex in dy- (K+2yl'l)5(L0)2+ 27|,|5C6I(_0)_K(1+ ylf‘Z)zo_
namics because, unlike in ordinary laser theory, where the
momentum is treated as a dummy variable, the momentum iBy solving the quadratic equation, we arrive at
the CARL becomes a dynamical variable. The number of
dynamical variables increases with the number of modes be- ©_ Y% VY|P 0%+ k(k+ 2y (1+y?)
ing excited. In this paper, we performed a linear stability =
analysis of a limited number of nontrivial steady states. We

found that instabilities can manifest themselves either in the, ;. e we keep only the negative root since B&g) can be
form of self-pulsings of well-defined period or in the form of satisfied only wher(?) is negative. Given @, we can first
irregular pulses. It seems, from our limited experience, thadetermineﬁ(o) from Eq. (Ad), and then insert the(® into
the former occurs whea is sufficiently large while the latter L g ' L

emerges when the transit interaction time is sufficiently Iong_?_Ither Eq.(A2) or Eq. (A3) to obtain the thr_eshold_value. .
It is important for atom optics that the matter waves develop he curve(a) (.)f Fig. 4 for the monognergehc atomic beam is
similar instabilities. If we operate the CARL in the unstable calculated using these formulas wilfpp =0.
parameter region, we can create atomic waves whose inten-

sities are modulated in time either periodically or chaotically.

These modulated matter waves may find use in future appli- ~ APPENDIX B: LINEAR STABILITY ANALYSIS

cations. _ _ In this Appendix, we present a numerical method based
As a future study, we plan to extend this work o situa-,n0n 2D MCF for obtaining eigenvalues from the linear

tions where trapped Bose condensates are employed. W:%upled equation§44), (45), and (46). To begin with, we
also plan to investigate the possibilities of using 2D MCF asygte that if we can express

a numerical tool for studying the statistical properties of both
matter and light waves.

(\_ﬁhere

, (A4)
K+ 2’}/|,|

f SR, (p)dp=—iSACl ,—isA*C%,, (Bla
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fON)=[1(8+8c)— k—A—aCL IX[—i(8 +c)—k—\ wherep[n]=pgo+ (I +|[1])/2+n—Nya—1. With this defini-
tion, we can now cast Eq$B2) and (B3) into inhomoge-

+aC?,]+a%Ct,C%,=0, neous tridiagonal matrix forms
where C%, and C%, are functions of\ to be determined M S+ M ST M ST =W (B6)

from Eg. (46). To yield the form of Egs(B1), we need to

divide each 6R(p) into two componentséRi(p) and M), is a diagonal matrix of dimensioB (1)< D(l) and its
SR?(p) according to diagonal elements are defined as

5R|(p)= _I5A5R|1(p)_l5A* 5R|2(p) Ml,l[n][n]: —il (Zp[n]_l_ o) — ')’H_)\-

M|+,|+1 is a matrix of dimensio (1) XD(l+1) whose ele-

The equations foBR;'(p) and 5R{(p) are found, from Eq.  mants are all zero except

(46), to satisfy, respectively,
M\ aln]in]=—i|A%, M|, i [n+1][n]=i]|A%]if =0,
R™1(p)—R™4(p—1) ’ ’

H 1 H st and
=—[il(2p—1—= &)+ N+ ¥ 18R} (p) +i|A%|

X[5R|l 1(p)_5R|l l(p+1)]+i|ASt| Mﬁ|+1[n][n]:i|A5t|’ MI_‘,—I-Fl[n][nJ'_l]: _i|ASt| if 1<0.
+ +

1  opl _ M, ,_, is a matrix of dimensio (1) XD(l—1) whose ele-
XLORI-1(P) = ORi_1(p~1)] (B2) ments are all zero except
and M;yaln]ln]=—i[A%],
st _ pst
RI+1(p) RI+1(p+1) Mf|,l[n][n+l]:+i|ASt| |f|>0,

=—[il(2p—1—68)+ N+ Z(p)+i|ASt
[i1(2p—1=6)+ N+ 16RF(p) +i| A% and

X[ 6R? — O6RZ, 1 (p+1)]+i|ASt
[ |+1(p) |+1(p )] | | M|_'|_1[n][n]:i|ASt|,
X[SRY_1(p)— SR?_;(p—1)]. (B3)
M, _i[n+1][n]=—i|ASY]if I<O.
The connection between the two components and all the co- ’
efficients is accomplished through the following integrations:Finally, vV{“ are vectors of dimensiob(l) defined as

Wl :RSI _RSt -1 ,
Cilzf 5Rl+1(p)dp, Cil:f 6R2+1(p)dp, in] r-1(p[n]) r-1(p[n] )
(B4a) W2n]=Re!  (p[n])— RSy (p[n]+1).
To solve Eq.(B6), we introduce a forward ansatz,
cti= [ s ypdp, c2y= [ R (i, 486
(B4b) S'=—-Q" M, S, +C, (B7)

according to Eq(B1). Both Eq.(B2) and Eq.(B3) show that  whereQ"" is a matrix of dimensiol (1) x D(l), andé{“ is
SR"(p), wherem=1 and 2, are coupled only to thd ( a vector of dimensiorD(l), both of which are unknown.

*1)th diffraction groups and therefore can also be solved blRepIacingS'ﬁl in Eq. (B6) with Eq. (B7) for I=1+1, and
2D MCF. However, this 2D MCF is more complex than that comparing the result with E¢B7), we find the following

presented in Sec. lll. In the latter case, we can take advangcyrsive relations:

tage of Eq.(15) to limit the diffraction groups td=0. This

is no longer the case here since Etj5) does not hold for =M, - Mfr|+1Qm+1M|_+1|)_1: (B8a)
SR|(p). As a result, we have to treat all the diffraction ’ ' '

groups between-| . and +1 5 N @ uniform manner. With élm: |m+(wlm_ Mf|+1é|m+1)- (B8b)

this in mind, we introduce, for a given momentum fanly;
two vectorsél and §2 of dimensionD(I)=2N5—l|+1. The starting values for the recursive relations are determined

These two vectors are used to hold, respectively, all the eleyy the boundary condition tha™ ,,=0. By inserting
ments SR(p) and SRZ(p) of a given diffraction groug. max

am R B )
They are defined as S, +1=0into Eq.(B6) for | =1 ,,and comparing the result

with Eqg. (B7), we find that
S'[n]=40R/(p[n]),m=1lor2n=1,2,...D(l), s Ir?n:x:(er?nax,lma)il’ (BYa)
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Ch =QMwn . BYb W' —M cr
Imax leax Imax ( ) am Imin |min'|min+1 Imin+1
min M M mt M !
Imin *' min |min’|min+lQ|min+l Imin'*']"lmin

As a result, all the matrice®"" and the vector<[" with ~ Which is obtained by simultaneously solving E&7) with
| <l max CaN be obtained from EqéB8) recursively, starting | =Imint1 and Eq.(B6) for | =1Ip,, keeping in mind the
from Egs.(B9).Finally, all the vector§™ with | >1,,,, can be ~ boundary condition§” _,=0. By repeating the steps for
derived according to EqB7) in a forward substitution, start- each momentum family, we can constru&R_ltzl(p) and

ing from 5R2 ,(p), which are used to construét® ; andC? ;.
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