Quantum Optics & Quantum Information

by Omar Santiago Magana-Loaiza
Outline

- Motivation
- Single Photon Interference
- Single Photon Source
- Entanglement and Bell’s Inequalities
- Future Work

by Omar S. Magana-Loaiza
Motivation

Why was this laboratory class so much fun and interesting?

http://www.nature.com/nature/journal/v456/n7223/full/456706a.html

by Omar Magana-Loaiza
We illustrate the wave particle duality of light:

Mach-Zehnder interferometer.

Single Photon level

Which-way information.

http://stochastix.wordpress.com/tag/wave-particle-duality/
For our case we attenuated the power from 1 uW to 100 pW with an average photon separation of 0.93 meters. This corresponds to an attenuation coefficient of 4 orders of magnitude.
Mach-Zehnder Interferometer

He-Ne Laser 633 nm

Spatial filter and collimator

Polarizer A

Polarizer B

Polarizer C

Polarized Beam Splitter

Mirror

Non Polarized Beam Splitter

EM CCD

Polarizer D

Filter

by Omar Magana-Loaiza
Which –way information

We collapse the wave-function!

A destruction of the wave-function using one of the polarizers

by Omar Magana-Loaiza
Young experiment

\[I = \left| \psi_I \right|^2 = (E_1 e^{ikr_1} + E_2 e^{ikr_2})(E_1 e^{-ikr_1} + E_2 e^{-ikr_2}) \]
\[= I_1 + I_2 + E_1 E_2 e^{ikr_1-ikr_2} + E_1 E_2 e^{ikr_2-ikr_1} \]
\[= I_1 + I_2 + 2\sqrt{I_1 I_2} \cos[k(r_1 - r_2)] \]
Wave-particle duality of light becomes clear!

a) 0.1 sec 4 orders of magnitude
b) 5 sec. 7 orders of magnitude
c) 5 sec. 8 orders of magnitude
d) 10 sec. 8 orders of magnitude
e) 10 sec. 8 orders of magnitude
f) 5 sec. 8 orders of magnitude
g) 5 sec. 8 orders of magnitude
h) 1 sec. 8 orders of magnitude
One of the most amazing experiments I ever seen!

Quoting J. Kimble “tickle one of the two systems, causes the second laugh”.

\[
|\psi\rangle = \frac{1}{\sqrt{2}} \left(|V\rangle_{q_1} |V\rangle_{q_2} + |H\rangle_{q_1} |H\rangle_{q_2} \right)
\]

\[
|\Psi_{12}\rangle \neq |\Psi_1\rangle \otimes |\Psi_2\rangle
\]

http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/homepage/opt253_08_lab1_entangl_manual.pdf

by Omar Magana-Loaiza
Polarizers play an important role.

We have a behavior similar to Malus Law!

\[P_{VV}(\alpha, \beta) = \left| \langle V_\alpha | V_\beta | \psi_{Bell} \rangle \right|^2 \]
\[P_{VH}(\alpha, \beta) = \left| \langle V_\alpha | H_\beta | \psi_{Bell} \rangle \right|^2 \]
\[P_{HH}(\alpha, \beta) = \left| \langle H_\alpha | H_\beta | \psi_{Bell} \rangle \right|^2 \]
\[P_{HV}(\alpha, \beta) = \left| \langle H_\alpha | V_\beta | \psi_{Bell} \rangle \right|^2 \]

\[P_{VV}(\alpha, \beta) = \frac{1}{2} \cos^2(\beta - \alpha) \]
\[P_{VH}(\alpha, \beta) = \frac{1}{2} \sin^2(\beta - \alpha) \]

\[S = \left| E(\alpha, \beta) - E(\alpha, \beta') + E(\alpha, \beta') + E(\alpha, \beta) \right| \]

\[E(\alpha, \beta) = \frac{N(\alpha, \beta) + N(\alpha, \beta_\bot) - N(\alpha, \beta_\bot) - N(\alpha_\bot, \beta)}{N(\alpha, \beta) + N(\alpha, \beta_\bot) - N(\alpha, \beta_\bot) - N(\alpha_\bot, \beta)} \]
Experimental setup
Down-Converted cones

Following the Clauser, Horne, Shimony and Holt ideas:

\[s = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 2\sqrt{2} \]
Experimental results
Experimental results

Values to calculate the parameters E and S

<table>
<thead>
<tr>
<th></th>
<th>$\beta=22.5^0$</th>
<th>$\beta'=67.5^0$</th>
<th>$\beta=112.5^0$</th>
<th>$\beta'=157.5^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha=0^0$</td>
<td>333</td>
<td>132</td>
<td>138</td>
<td>404</td>
</tr>
<tr>
<td>$\alpha'=45^0$</td>
<td>442</td>
<td>410</td>
<td>116</td>
<td>58</td>
</tr>
<tr>
<td>$\alpha'=90^0$</td>
<td>103</td>
<td>358</td>
<td>397</td>
<td>166</td>
</tr>
<tr>
<td>$\alpha'=135^0$</td>
<td>147</td>
<td>68</td>
<td>354</td>
<td>525</td>
</tr>
</tbody>
</table>

We violated Bell's inequalities!

We proved non-locality!
Experimental Quantum dots as single emitters

Resonance in optical frequencies.

Size of the structure

Particle in a box

$$g^{(2)}(\tau) = \frac{\langle n_1(t)n_2(t+\tau) \rangle}{\langle n_1(t) \rangle \langle n_2(t+\tau) \rangle}$$
Experimental setup

Electrical calibration

Confocal microscopy

http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/homepage/opt253_labs_3_4_manual_08.pdf

by Omar Magana-Loaiza
Photonic Bandgap Materials

http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/homepage/opt253_labs_3_4_manual_08.pdf
CdSe Quantum dots blinking
Antibunching of CdSe QDs

\[g^{(2)}(\tau) = \frac{\langle n_1(t) n_2(t+\tau) \rangle}{\langle n_1(t) \rangle \langle n_2(t+\tau) \rangle} g^{(2)}(0) \]

\begin{align*}
\geq 1 & \quad \text{Classic light source} \\
< 1 & \quad \text{Quantum light source} \\
\circ & \quad \text{Single photon emitter}
\end{align*}

Hanbury and Twiss setup

by Omar Magana-Loaiza
Colloidal Quantum dots blinking
Fluorescence Lifetime

\[Counting = A \exp\left(-\frac{\Delta t}{\tau}\right) \]

The average lifetime determined by averaging the 4 curves shown above and fitting was 67.2 ns with an error percentage of 4.72%.
I think that in the future will be interesting to use a Mach-Zehnder and Young interferometer to calculate coherence parameters.

The measurement of second order correlation function in the Mach-Zehnder interferometer will allow to experimentally compare the difference between antibunching and coherent light.
Acknowledgements

Prof. Svetlana Lukishova

For all her patience, advice and support that made this course such an interesting and challenging experience.

Sophie Vo and my classmates for all the interesting discussions and friendship.

Thank you!