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Classical limit states of the helium atom
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The techniques of Rydberg electronic wave packets are used to explore the classical limit states of helium.
A class ofshape-preservingrbits is studied under the classical adiabatic approximation that separates the
dynamics of the two electrons. These states form the classical basis for two-electron wave packet states whose
hydrogenic counterparts are shown to be elliptic states in the presence of a rotating electric field.
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[. INTRODUCTION limit of quantum dynamics involving multiple electrons.
Stable two-electron states are very attractive from the ex-

The classical simplicity and intuitive appeal of Bohr's perimental point of view because they provide an environ-
atomic model have given the classical hydrogen atom ament in which electron correlation can be studied over long
important and pervasive role in atomic physics. Even todayperiods of time. Planetary atom staf@ are those in which
the Bohr model remains as a cornerstone underlying quarihe electrons are excited to asymmetric double Rydberg
tum mechanics. However, the precise role of this classica$tates(i.e., the radial expectation values are uneqye])
foundation has been debated since the early days of quantur(r2))- In a very general way, the correlations in these plan-
theory. Recently, a series of experimental and theoreticgftary states can be ascribed to the radial and angular dynam-
studies has sought to explore the classical limit of quantunics of the classical electron-electron interactjaf]. It is the
mechanics using Rydberg electron wave packéls These a_ngular porrglatlon that is of interest in the orbits that we will
studies of hydrogenlike atoms have allowed us to understan@Scuss in this paper. The polarizing effect of the outer elec-
some of the essential differences between the quantum m&on leads to states whose classical counterparts exhibit a
chanical atom and its more familiar classical counterpart. coupling between the outer electron and the orbital param-

The logical progression of the hydrogenic studies is toeters of the inner electron.
extend them to include planetary atoms with multiple va-
lence electron$2—6]. However, even for the simplest such
atom, helium, this extension is nontrivial because the old
guantum theory of Bohr was never successfully modified to
include helium. Early in this century a considerable effort
was made to develop a classical model for helium, but no
stable planetary orbits were foufsee Figs. (a) and 1b)].

By 1920 Bohr had concluded that for stability, one must
allow for “possibilities of more complicated motions[7]

but before these possibilities could be explored, classical
atomic physics was abandoned in the wake of wave mechan-
ics and classical helium was put aside. However, the success
of the hydrogenic wave packet studies and recent progress in
semiclassical dynamics has once again revived interest in the
classical limit of multielectron systenj9—11].

In this paper we discuss an approach that relies heavily on
hydrogenic wave packet models while including effects that
are unigue to multielectron atoms. If the effects of a second
valence electron are considered, the resulting dynamics, both
classical and quantum mechanical, is in general unstable. ©) )

The doubly excited system decays rapidly as a result of auto-
ionization, with one electron ejected and the other falling £ 1. A pictorial survey of some classical helium orbits. The

back to an ionic ground stafé2]. However, some isolated tyo-electron trajectories shown {@) and (b) are highly symmetric
classes of classical two-electron orbjee Figs. &) and  ynstable orbits which were studied in an attempt to extend the Bohr
1(d)] are known to be stable despite the fact that their energynodel[3,7,8. The orbits shown ir(c) and (d) are stable orbits in

is above the one-electron ionization threshpld,13—-13.  which the dynamics of the individual electrons is quite dissimilar.
Studies of wave packet states based on such “planetaryin these orbits it is difficult to resolve the rapid motion of the inner
orbits will help to extend our understanding of the classicaklectron.
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planet is a limiting case. In the general case of this kind the

600
initial trajectory of the inner electron is an arbitrary ellipse,

=300 while the outer electron initially travels in a high-angular-

'?: momentum orbit in the same plane as that of the inner elec-

E 0 S . tron. An example of such an orbit is shown in FigbR The

2 shielding of the core by the elliptic inner orbit is incomplete

< 300 and the outer electron moves slowly in a circle. Orbits such
as those in Fig. 2 are remarkable because there is no net

-600 (@) exchange of angular momentum between the electrons. A

600 300 O 300 600 600 300 O 300 600 consequence of this is that, although 'the inner Qrbit pre-
x (Bohr radii) cesses, its shape does not change in time. We will refer to
this class of orbits ashape preserving
FIG. 2. Numerical simulations of two-electron orbits in helium.

(& In the classical frozen planet configuration the two electrons are Il. CLASSICAL ADIABATIC MODEL
found in a collinear arrangement on the same side of the nucleus
(which lies at the origin For this orbitZ. and the total angular We begin our formal analysis by treating the case of a
momentum are zergb) The major axis of the inner electron’s orbit Single classical electron orbiting an atomic core with charge
adiabatically follows the outer electron in a shape-invariant orbit forZ in the presence of a weak circularly polarized electric field.
which Z4= 0.5 and the total angular momentum is nonzero. The goal is to find the conditions under which a single-

. . . electron orbit in a rotating electric field can mimic the be-
We will demonstrate that the dynamical picture of & broady,ior of the inner orbit shown in Fig.(B). The signature of

class of these planetary orbits can be greatly simplified byis henavior is simply a precession of a shape-preserving
reduction to two coupled single-electron models. This sim- it.

plification is accomplished with the help of an adiabatic ap- - ¢ agjiapatic analysis is a generalization of the static field

proximation, which can be applied in the case in which on€ et first obtained by BoHji7] and revived more recently in

of the electrons is more highly excif[ed_ than the_ot[ib?]. the study of Rydberg atonf@3—27. As in the case of the
For even a modest difference in excitation energies the MOr&atic field, the interesting dynamics of the system is con-

tightly bound inngr electron will complete many r_evolution-s tained entirely in the evolution of the time-averaged orbital
per single revolution of the outer electron. This difference inyo .- naters and not in the rapidly varying position and mo-
time scales plays a very important role in the determinatio entum. r :;md p. We require that the field be weak and

of Epﬁ effect of the eIecgond—_eI%ctéo_n interaction. g slowly varying so that the time scale of the field-induced
This interaction can be divided into two components ©-dynamics is much longer than the orbital or Kepler period,
scribing the effect of each electron on the other. The slowlyl-k’ of the electronic motion. This allows us to average the

moving outer electron cannot respond to_the rapidly ChangE)rbital parameters over a Kepler period using the adiabatic
ing repulsive Coulomb force due to the inner electron. In'agproximation well known in physidg]

stead, it experienges a core screening which, when average The orbital parameters of interest are the angular momen-
over the entire orbit of the inner electron, can be replaceq bYum, L=rxp, and the scaled Runge-Lenz vector

an effective core chargg.s in a hydrogenic system. This
classical outer electron is represented quantum mechanically n
by a circular orbit wave packefl8] moving about the A:Z
screened core. To model the averaged effect of the outer

electron on the inner electron, we can replace the outer elec%We use atomic units throughout the papefhe scaled
tron by an equivalent electric fiele in a manner similar to - rnge-Lenz vector is a constant of the field-free motion and
that first suggested by Bofr] for dc electric fields and later  |jgg antiparallel to the major axis of the orbit and perpendicu-

evidenced in the experiments of Eichmaanal. [19]. In |5 {5 the angular momentum vector. Its magnitude is equal
contrast to the dc fields results, the orbits discussed in thlﬁ) ne wheree is the eccentricity of the orbit

paper require an equivalent rotating field. The resulting clas-

Zr
pXL—T). (1)

sical model with this effective electric field has a quantum- IL|2
mechanical analog that we will show to be an elliptic state or €= 1— —, 2)
angular wave packet. Thus we develop two coupled one- n?

electron systems that self-consistently include the effects of _
both electrons and whose counterparts in quantum mechani@®d n corresponds to the enerdy=—Z%/(2n?). The time
are wave packet states. evolution of L and A is found by differentiating the above
In Fig. 2 are shown two orbits for which such an adiabaticequations and by replacing the expressions fandp with
separation of the dynamics is appropriate. Extensive studiddamilton’s equations of motion. The Hamiltonian in the
[5,10,11,14,17,20-32f the unusuafrozen planet configu- presence of the field is
rations shown in Fig. 2a) were motivated by the experiment
of Eichmannet al.[19] in barium. The inner electron travels
in a linear orbit, spending most of the time near the outer
turning point and completely shielding the core from the
outer electron. In this paper we are concerned with a broadhereE(t) is an electric field whose amplitude varies slowly
class of two-electron configurations of which the frozencompared to the orbital frequency. The rapid oscillations due

p> Z
H=H0+r-E(t)=?—?+r-E(t), 3)
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to the motion of the inner electron are removed by averaging@ut changing its shape. It is these shape-preserving orbits
the equations fot. and A over one orbital period’,. The that are of interest in describing the two-electron orbits of

resulting equations are Fig. 2. . S
In general, shape-preserving orbits exist in single-electron

. 3n systems as long as the initial angular momentum and Runge-

(A1,=— 57 (B X{L)r,=—ox(L), Lenz vectors lie in the plane defined loy, and e, . How-
(4) ever, for reasons of symmetry, this model is only useful for

_ 3n classical two-electron systems in which both orbits lie in the
(Lyr=- §<E>TkX<A>Tk: — 0 X (A7, same pland29]. The orbits shown in Fig. 2 satisfy this re-
quirement and can be modeled by single-electron orbits be-
longing to theA; class. Simple precession in the laboratory
frame is represented by a shape-preserving orbit in the rotat-
ing frame. For orbits lying in the plane of rotation, E8) is
easily solved:

wherews is the Stark frequency vector pointing in the direc-
tion of the applied field.

If E is an electrostatic field in the plane of the orbit Egs.
(4) describe a well-known Stark oscillation of the angular
momentum and the eccentricity of the ellipse with frequency

ws=3nE/(2Z) [7]. The only orbit that remains unchanged T _(t)=T (0)— A, (0)sin(Qt)+ wsy[cogm)_l]
by the field is the linear orbit aligned with the field, whose ~ ~ ‘ Qv 02 ’
quantum-mechanical counterpart, the extreme Stark state, is
an eigenstate of the atom-plus-field Hamiltonian. ~ 5 W W,y

The dynamics o(L)Tk and(A)Tk are more complex when A(t)=A,(0)+ ﬁAy(O)sin(Qt)— 02 [cogQt)—1],

the applied field is a circularly polarized electric field rotat- 9)
ing slowly with frequencyw, = w,Z:

E(t) = E[co w, 1) X+ sin(w,1)y]. (5) 7\y(t)=7Ay(0)coiﬂt)+%sin(9t),

If w,<2m/Ty, the time averages df andA are still valid  \yhere( = 10| = Jw?+ o? is a generalized frequency and
and the equations can be simplified with the introduction ofig 5 parameter defined by

an angular momentum vectb(t) and a scaled Runge-Lenz

vectorA(t) rotating with the electric field 7:,;6\),(0) = wsl ,(0)— w,A(0). (10
L= R(O(L()r,, For a shape-preserving solution, the initial vecgf0) lies
along Q requiring
A(t)=R(t)(A(D)T,, ©®) A,(0)=0, (11)
cofw,t) sinw/it) 0 y=0. (12

R(t)=[ —sin(e,t) cofw,t) O
0 0 1 The first of these conditions simply states that the orbit must

be aligned initially with the field. The second condition de-

Using the coordinates defined by the orientation of the fieldCibes a balance between the rotation of the electric field
in Eq. (5), the symmetry of the interaction divides the orbital @1d the Stark evolution of the orbital parameters. When

) =~ = = =0 these effects cancel to produce a simple precession of
parameters into two uncoupled vectays=(Ay.Ay,L;) and the orbit analogous to that found in two-electron orbits. For

A, =(Ly,Ly,A;). Orbits whose angular momenta are paral-an gfliptical orbit aligned with the field, having initial angu-

lel to w; are described b, while A, describes those orbits |3r mementumi and eccentricitye, this condition ony can
whose angular momenta lie in the plane of rotation. Using,e rewritten as

Egs.(4) it is easily shown that these vectors evolve accord-

ing to I
] W=~ 05— (13
A = QXA (7) . . . . .
dt Any choice of orbit can be made shape invariant over a wide
range of field strengths and frequencies related by(E8).
d Q When rewritten as Eq13) it is clear that the handedness of
atM= XN, ®)  the orbital motion is opposite to that of the rotating field. In

two-electron orbits this condition requires that the electrons
where Q= ws+ w, . Equations(7) and (8) describe preces- orbit the nucleus in opposite directions. Kaling®i0] has
sion aboutQ) in the rotating frame. However, if either vector shown that if the axis of the inner orbit is aligned antiparallel
Ay or A, is initially parallel or antiparallel tq2, there will be  to the radius vector of the outer electron, a limited range of
no precession and the initial vector will remain unchangedsolutions is allowed in which the two electrons orbit in the
In the laboratory frame the orbit rotates with the field with- same direction.
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bilization of the Trojan wave packets represents a balance
between the applied field and the dispersion inherent be-
tween the energy levels of differentmanifolds. In the case
of the shape-preserving orbits discussed in this paper, a wave
packet representation would involve states from the same
manifold and hence no dispersion. The stabilization in this
b) case is a balance between the two field-generated effects.
-200 This type of stabilization is of limited interest in single-
200 -100 0 100 200 -200 -100 O 100 200 electron atoms but is important in discussions of two-
x (Bohr radii) x (Bohr radii) electron dynamics, as we will see in the following section.
A close connection between the Trojan wave packets and
15 the multielectron dynamics described here was recently pro-
: posed for rotating molecular systems that have a large elec-
N D \/\/ tric dipole momen{33]. The role of the rotating electric field
=~ 1 is replaced by the presence of the rotating dipole moment
©) d) producing a system that is functionally identical to that of the
0 10 20 30 40 0 10 20 30 40 atomic Trojan wave packets.

200

100

0

-100

y (Bohr radii)

-15

time time
(Kepler periods) (Kepler periods) lll. CLASSICAL MODEL OF DYNAMICAL SCREENING

. . . IN TWO-ELECTRON ATOMS
FIG. 3. The Stark evolution of the electron trajectory in a clas-

sical hydrogenic atonfwith Z=2,n=15)=11) in a rotating elec- . be sh hat th del of inal
tric field. Initially, the electric field lies along the major axis of the It now remains to be shown that the model of a single-

orbital ellipse. (@) When y is zero @.=2x10"% s and o, electrqn atom in a rotating field can be used to predict the
=2.16x10°° sY), the major axis of the orbit adiabatically fol- Dehavior of the two-electron system. Two parameters must
lows the field.(b) In this orbit for which y is nonzero =2  De calculated: the effective core charge seen by the outer
X105 s, w,=—-4x105 s7%, andy=—6.28x10"% s}, the €lectron and the effective rotating electric field experienced
field rotates in th@ppositedirection at twice the frequency and the by the inner electron. The shape-invariant precessing orbits
major axis of the orbit doesot follow the field. The corresponding are found by coupling these quantities together under the
angular momenta as functions of time are show(cjrand(d). The  condition y=0.
labels (i, ii) indicate the angular momentum for various points on ~ The motion of the outer electron is modeled by a circular
the trajectory in(b). orbit around a core of charggy;. We characterize this orbit
with n, and l,=n,, and by an orbital periodT,

In Fig. 3 we show two orbits in the presence of a rotating=27n3/ZZ;. The inner electron is in an elliptic orbit about a
field. Wheny=0, Eqs.(9) become time independent and the core of Z=2 with n, |;, and eccentricitye;. The Bohr ra-
shape of the orbit remains unchanged in the rotating frame agius of this orbit is given bya;=n3/Z. The effective radial
the major axis of the ellipse adiabatically follows the field. In force experienced by the outer electron, averaged over the
the laboratory frame this motion appears as the slow precesnotion of the inner electron, is
sion of the orbit shown in Fig.(3). This effect produced by

a rotating electric field will allow us to model part of the Zai(T5) r,—r,cosé; 2
two-electron dynamics with this simple single-electron eff= 2 == W + r_2 (14)
model. In the limiting casev,—0 it follows that the only 2 21 T, 2

shape-invariant orbit has angular momentum0, makingy . o o
trivially zero. This result reaffirms the previous observation,Although Eq.(14) has an analytic solution in terms of elliptic

that the linear orbit is stationary in an electrostatic field.  integrals we will express its solution in terms of a multipole

The dynamics of the orbit shown in Fig(t8 appears to €Xpansion in powers af; /r,:
be much more complicated whep does not equal zero. 382
Howeyer, Eq_s(g) reveql that the behavior that Iook_s qung Zei(Fo)=1— €1 —1(1+9e§)+0
complicated in the trajectory can be understood simply in ro 4r§
terms of an oscillating angular momentum as we see in Fig.

3(d). This behavior is also evident in the two-electron orbitsFor helium Z=2) the ratior,/a,>5.4[see Fig. 4a)] for all

that are examined in the following section. In this case it carvalues ofe;, and only the first few terms of the seri€kb)

be interpreted in terms of an exchange of angular momenturare necessary. In the case of a linear inner-electron orbit
between the two electrons. (e1=1) the expansion for the effective potential coincides

We point out that, despite the similarity of this situation to with the one in Ref[17].
that of a Trojan wave packdB1,32, the physics is quite To complete the analogy of our two-electron model to a
different. Briefly, a Trojan wave packet is formed when asingle-electron atom in a rotating field, we calculate the ef-
circular state is placed in a circularly polarized electric fieldfective field experienced by the inner electron,
rotating at the Kepler frequency. The field couples the initial
state to neighboring circular states forming a wave packet E <r2—rlc0301>

T

3
i) . (15
2

that does not exhibit the spreading and interference associ- eff— (16)

E
ated with field-free circular-orbit wave packéis8]. The sta- Ir2=r4l
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e A limit, the orbit of the inner electron becomes circular and the

ok (@ - screened core charge approaches unity. Although in this limit
L - the eccentricity is approaching zero, the adiabatic require-
Q: s | 4 ment thatw, remain much less than the Kepler frequency is
= L _ not violated because the strength of the effective fiald
6 i hencew,) is decreasing more rapidly asrg./

T The analytic theory derived from the coupled single-
——— ] electron models provides an illuminating explanation of the
shape-preserving orbits in Fig(l, but even for cases in
which vy is not equal to zero the preceding analysis provides
insight into the dynamics. Figure(& shows a single-
electron orbit closely matched to the helium orbit in Fig.
1(c). In these orbits there is a sinusoidal exchange of angular
momentum that in the case of helium produces a nonuniform
angular velocity of the outer electron. The magnitude of this
angular velocity oscillates sinusoidally at the same frequency
l, as the angular momentum exchange. Also, instead of adia-
batically following the outer electron, the major axis of the
FIG. 4. The radial positioriin units of a;) and the effective inner electron’s orbit now oscillates about a line connecting
charge seen by the outer electron orbiting an inner electron withhe nucleus and the outer electron. As can be seen from Figs.
n,;=15. The line in(a) is the solution to equatiol8) and these 1(c) and 5, many features of these multielectron orbits are
values ofr, are then substituted int@l5) to give the effective explained by the coupled one-electron models but a more
charge shown irb). The points on both plots were calculated by general approach will be required to produce quantitative
numerically integrating the equations of motion for the classicalagreement.
helium problem with a nucleus of infinite mass. In the limit of a An obvious extension to the shape-preserving orbits de-
linear inner orbit;—0, the inner electron completely screens the ¢ riped in the preceding section is to include configurations
nucleus. in which the outer electron is in an elliptical orbit with ec-
which may also be expressed in terms of a multipole expan(-:emriCity €2- In _this case the rotatio_nal frequency of t_he
o i outer electron will vary around the orbit, as will the effective
sion in powers of ; /1! electric field. To first order both of these quantities vary as
2.3 1/r§, causing the ratio ofws/w, to remain constant, thus
_1) ) maintaining the conditiory=0. The constancy of this ratio
r was pointed out by Bellomet al.[27] who used this fact to
17 develop a simple geometrical interpretation of collisional
) ) - ) ) population of high angular momentum Rydberg states.
Equation(13) provides the condition for a shape-invariant " This result would seem to indicate that the condition for
inner-electron orbit. In the coupled single-electron modelssiapie orbits, Eq(13), might still be satisfied even when the
the inner electron interacts with an electric fi#lgs, which  oyter orbit is elliptical. The adiabatic theory is easily modi-
rotates with frequencw,=27/T,, while the outer electron fied to include these cases. At a radiys the angular fre-
sees a core of charggy. Equationg13), (15), and(17) can quency of the outer electron is given by
be combined into an equation i,

1.0

Zeff

05

00 [t

(=}
w
—_
(=]
—
wn

1 3ae; 3a? )
Ee(r2)=—| 1+ +—(1+9€)+0
rs Iz rs

I
SEer(ra) _ €1 [Zenlra) 18) @ =3 (19
27 Il rg ! 2
Reexpressing, in terms ofZy, €5, andr, we find an ex-

which is solved numerically to find the radius of the outer Sression analogous to E(L8):

electron that assures that the orbit of the inner electron do
not change shape.

In Fig. 4 are shown plots of the values of and Z, Mz _ & M (20)
predicted by the coupled one-electron models, as functions 2Z Iy rs
of the eccentricity of the inner orbit. In the same figure are
shown the corresponding values from numerical simulation$Ve can solve this in a manner identical to that used for
obtained by integrating the classical equations of motion forcircular outer orbits and we find that, for a given inner elec-
the full two-electron problem. The latter results were ob-tron orbit, there is a complete set of elliptical orbits for the
tained by searching for a configuration that minimized theouter electron. In Fig. 6 we show these results for an inner
exchange of angular momentum between the electrons. Thabit of €;=0.68.
agreement between the approximate analytic result and the The numerical simulations reveal that these predicted or-
full numerical simulation is extremely good. As the inner bits are not a simple extension of the previous shape-
orbit becomes more eccentric the degree of core shieldingreserving orbits. The failure of this prediction lies in the
increases, reducing the effective cha#yg to zero. This is assumption that the effective electric field was approximately
the limit of the frozen planet configurations. In the other Coulombic. Equatior{17) provides a more accurate expres-



PRA 58 CLASSICAL LIMIT STATES OF THE HELIUM ATOM 191

1500 T T T T

1000 | E

500 R

y (Bohr radii)

500 | |
(a)
05 -1000 i
"‘- l'.‘ e -, 1
] S O 1
PN N N N ] -1500 s - . .
/\ /\ / 21500 -1000  -500 0 500 1000 1500

coo ] x (Bohr radii)

012 (radians)
C
(€
C
C

FIG. 6. A numerical simulation involving a noncircular orbit for
the outer electron. The two-electron orbit is not of the shape-
preserving class because of the higher order moments in the expan-
sions of the effective core and effective electric field. These correc-
tions lead to a precession of the orbit of the outer electron. The
eccentricities of the inner and outer orbits arg=0.68 ande,
=0.5. The maximum exchange of angular momentum s
=3.6.

Ly

angular momentum

ring [13] orbits and explains why the exchange of angular
momentum is smal{though nonzerp

2

2

T; '; IV. QUANTUM-MECHANICAL CORRESPONDENCE

-

%"5 The calculations that we have carried out thus far make
%” -’ use of classical theory. In single-electron atoms, wave-packet

states have bridged the gap between classical and quantum
mechanics. Although in general, two-electron wave packets
require the full two-electron quantum theory we can demon-
strate the behavior of the shape-preserving orbits using hy-
FIG. 5. (a) This classical one-electron orbit in a rotating electric drogenic quantum theory. The analysis of a classical electron
field corresponds to the two-electron orbit shown in Fig)1The  interacting with a circularly polarized field did not depend on
three plots compargb) the angle between the major axis of the the exact initial position and momentum, but rather on the
inner electron’s orbit and the outer electron or fidld,the angular  initial orbital parameters. The time averages in Eg$.can
momentum of the inner electron, afd) the angular velocity of the  pe replaced by ensemble averages and Ejscan now be
outer electron or field. The solid lines represent the two-electronnterpreted in terms of an ensemble of electrons rather than
model and the dashed lines are the results of the hydrogenic atom jR terms of one isolated electron.
a rotating field. A quantum-mechanical analog of such a classical en-
. e . . semble traveling in an elliptic orbit is an elliptic stdt&5].
3|on_fc_)r this field in wh|c_h_the hlgher-order terms are _nOtFormaIIy an elliptic state in they plane is a coherent state
negligible for any eccentricity;. The higher-order terms in the rotation group in three dimensions, @D whose gen-

the multipole expansion lead to a precession of the OUteL aorg are two components of the scaled Runge-Lenz opera-

orbit that is analogous to the precession seen in alkali atoms -~ A
[34]. More eccentric orbits will experience a more rapid pre-Eor’ Ax andA,, and a component of the angular momentum,
cession because of the enhanced “core” effects at small ra-z- These operators form a generalized angular momentum
dii. vector A whose classical analog ) .

Despite the presence of these non-Coulombic effects, the We will show that elliptic states do display behavior iden-
predicted configurations are approximately shape preservingical to that of a classical ensemble in a rotating electric field
even for quite eccentric orbits of the outer electron. Thisand, moreover, the elliptic state whose shape is stable in the

adiabatic model reveals the nature of this clasdofible field is an eigenstate in this field.

0 200000 400000 600000
time (a.u.)
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tightly localized about an ellipse whose eccentricitis de-
fined by

— n—-1
e=(A)/n= — Sina. (24

There exists a one-to-one correspondence between the clas-
sical orbits and the elliptic states whose parameters are re-

lated by

FIG. 7. The probability density of an elliptic stata< 15 and uantum< classical
a=0.27) projected on to they plane. The probability of finding q
an electron is greater in the neighborhood of the outer than in the n-1
neighborhood of the inner turning point. This state corresponds to € n €
(£,)=11.33 and an eccentricity @f=0.55. ~ n—1

<Lz> TLz-
A. Quantum theory of hydrogen in a weak rotating (25)

electric field

The derivation in Sec. Il was a purely classical calculation|n the limit of largen, the scaling factor becomes unity and
but Egs.(9) and Eq.(13) can be obtained quantum mechani- the expectation value of the quantum angular momentum and
cally for a weak dc electric field in which neighboring  eccentricity are identical to the classical values. However, we
manifolds are not mixed. will not require the invocation of the limit of large quantum

Using the Pauli substitutiof86] we can write the Hamil-  numbers and the following derivation applies to all elliptic
tonian operator for an atom in a rotating electric field as  states regardless of

A A Choosing the elliptic state to be the initial state, the initial
H=Ho— ay(t)-A. (2)  conditions are given bi35]

For a field rotating in thexy plane, only the evolution of the
operators associated with the classical veatpis required.

The Heisenberg equations of motion f#g,A,, andL, are
given by

(zz(o»: (n—1)cosa,
<“’le(0)>:(n—l)sin a, (26)

d. o A (A,(0))=0.
d_Ax(t):_i[Ava]:_wstSin(wrt)a
t The resulting time evolution of the expectation values of
q A, Ay, and A, is
aAy(t) =—i[A, A= wdl cogw,t), (22)
<i2(t)>=(n—1)coSa+$«yq[cos{m)—1],
d. . oA R R
aLZ(t) =—i[L,,H]=odAsin(wt)—Ajcog o t)],

~ . w,
~ A A(t)y=(n—1)sina— — y[cogQt)—1], (27
where we have used the commutator relationsAQrA, , (A0) 0?2 vl ]

andL,.

We define operatorsl,, A, and £, which are rotating (A (1)) = ﬁsin(m),
with the field. The resulting operator equations of motion are Q

their operator equivalents. In order to reproduce the shape-

preserving orbit quantum mechanically, the expectation val- Y= ws(N—1)cosa+w,(n—1)sin a. (28
ues of these equations must reduce to Efs. The choice
for the initial state is critical but we will show that the ap- When y4=0, the quantum state remains unchanged in the
propriate choice is an elliptic state. rotating frame just as in the classical orbits. The condition on
The elliptic states may be represented as nongeometritie stabilizing field can be written as
rotations of the circular state,n—1,n—1) [37,3§
ws= — w,tan a, (29
[V (h)=e"'*Yn.n—1n-1). (23 Wwhich can be shown to be equivalent to E4d) using Egs.

The anglea parametrizes the rotation to produce the entire(26)

range of elliptic states whose major axes lie alongxlais. -
The projection of the probability density of an elliptic state _ 0gL,0))

. 4 2 = 30
onto thexy plane is shown in Fig. 7. The wave function is Or ne(0) (30



PRA 58 CLASSICAL LIMIT STATES OF THE HELIUM ATOM 193

striking in Fig. 9 when compared to Fig(l8. The quantum
state evolves identically to the classical orbit, its angular lo-
calization closely matching the eccentricity of the classical
ellipse.

Because of the difference in the classical and quantum
definitions of the eccentricitigsee Eqs(25)], the conditions
given by Egs(13) and(30) lead to slight differences in the
initial conditions of the quantum and classical systems. In
the limit of largen the agreement is exact, but for modest
values ofn the discrepancies are noticeable. For the example
shown in Fig. 8 withn= 15, the ratiow, / wg is 1.08, leading
to classical initial conditions df=11 ande=0.68 but quan-

tum initial conditions of(z‘z)=10.27 ande =0.64.
FIG. 8. This figure is a schematic representation of the corre-

spondence between a rotating hydrogenic elliptic Siaeresented

by the outer contour plotsand a classical helium orbitnner tra-

jectory). The elliptic state &=0.2387) evolves in a rotating field When the coherent state B3) is used as an initial wave

which satisfies Eq(29). These snapshots in time reveal a shape-function, we find that the wave function of the state will

preserving wave packet that is exactly analogous to the shapgemain unchanged except for a rotation. We will now explic-

preserving classical orbit. The field strength is 2284v/cm and  itly show that this state is in fact an eigenstate in this rotating

=1.08x 10" °. The elliptic state is in fact rotating about the nucleus field [39,40.

contained within the contours but each snapshot has been displaced We choose as an initial state the elliptic state represented

for illustrative purposes. by Eg. (23). The Hamiltonian for the case of a hydrogen
atom interacting with a right-circularly polarized field in a

In Figs. 8 and 9 we show the evolution of a hydrogenicrotating frame i§41]

elliptic state in rotating electric fields. These snapshots of the R

evolution were obtained by numerically integrating Schro H=Hy— 0, L,— w5 Ay, (32)

inger's equation in the rotating field. The calculation in-

volved only then=15 manifold in hydrogen and the field Where we have rewritten the interaction term using the Pauli

strengths and frequencies were chosen to correspond to tgebstitution. The usual time-evolution operator is rewritten

equivalent case shown in Fig. 3 whefe=2. Note the cor- aS

respondence to the classical orbit, which is perhaps most

B. Eigenstate of rotating field

U(t,O)Z e—iwrtzze—it(ﬂo—wrzz— ‘l’s-:‘lx), (32
leading to a time evolution of the elliptic states of
|#n(D))=U0(t,0)|n(0))
=g iortlg=it(Ho— oL~ wgd) o~ a.;ly| n,n—1n-1).
(33

With the aid of the commutation relations and standard op-
erator algebra, the product of exponentials can be reduced
using

e (Ho— w, L,— wgA)e 1 *Ay

= 7:[04— Z’,Z(a)rCOS a— wSin a)
+ A0S a+ w,Sin a). (34)

When the conditionv, sin a+wo0sa=0 is satisfied, opera-

tor A, vanishes from Eq(33). Note that this condition is the
same as Eq29). The state at timé is then

| (1)) =€ '?VeTtert (@71 |n,n—1n—1)), (39)
FIG. 9. Snapshots of the evolution of a hydrogeric=(1) el-
liptic state corresponding t0C,)=10.26 in a rotating electric field. = (phaseX(rotation X (initial state,
The field doesot satisfy (29) and the field strength is 2284V/cm
and w,=—2.16x 1075, The dashed arrows show the direction of Where ¢(t) =t/2n?+t(w,cosa—wsin a)(n—1) is the time-
the rotating field at the time of the snapshot and they clearly shovlependent phase. Equati(8b) states that the wave function
that the wave packet does not follow the electric field. at timet is just the initial elliptic state rotating in step with
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the applied field. In other words, an elliptic state is an eigenpackets is not expected to be a simple matter. To observe the
state of the atom-plus-field Hamiltonian in the rotating shape-preserving orbits one must excite a state that is essen-
frame, provided that the strength and rotational frequency ofially an elliptic state in the presence of a three-
the field satisfy Eq(30). dimensionally localized circular orbit wave packet. Recently,
We have shown that the shape-preserving classical orbitsvo-electron Rydberg experiments have relied heavily on
have as analogs, the elliptic states, which are eigenstates izblated core excitatiofL6] to achieve a multistep excitation
the circularly polarized electric field. The classical modelof the final doubly excited state. The two-electron wave
offers a simpler system for studying the properties of thepackets suggested here will require a similar stepwise ap-
guantum states and it suggests possible approaches for gx-oach in which wave packets, not eigenstates, are excited in

ploring two-electron wave packets. individual electrons. By themselves, each of these single-
electron wave packets represents a significant experimental
V. CONCLUSIONS challenge that must be met before such two-electron wave

] ) ) packets can be realized. The models discussed in this paper
In the orbits that we have described the coordinates andyggest that the production of circular orbit wave packets
momenta of the two electrons are uncorrelated; instead @3] in alkalis and studies of hydrogenic elliptic states in
coordinates of one electron are correlated with the orbitajotating fields are very important first steps that must be

parameters of the other electron. This classical result agreggien in order to develop the techniques required for two-
with the observation that angular correlations dominate ifgjectron wave packet experiments.

doubly excited states while radial correlations are found only
when the electronic wave functions have equal exféft.

This indicates that explorations of wave-packet states and the
classical limit of two-electron atoms might better utilize an-
gularly localized wave packefs12] rather than the radial We would like to acknowledge helpful discussions with J.
wave packets that have proven so useful in the case of on®romage, J. D. Corless, M. F. VanLeeuwen, G. Ezra, and M.
electron atoms. Kalinski. This work was supported in part by the U.S. Army

The experimental realization of such two-electron waveResearch Office.
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