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Comment on “Resonance-fluorescence and absorption spectra of a two-level atom driven
by a strong bichromatic field”
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We identify discrepancies between two published predictions of the resonance fluorescence from a two-level
atom driven by a strong bichromatic field. Opt. Soc. Am. B8, 1163(1991) and Phys. Rev. A8, 3092
(1993]. These discrepancies are shown to arise from subtleties in extracting the time-averaged resonance
fluorescence from the expansions used to solve the optical Bloch equations. We construct a solution to these
equations that corrects the results of the latter reference and reconciles the two predictions.
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In studying the resonance fluorescence from a driven two- dXx
level atom, we discovered that two well-known theofieg] at =A(t)X(t)+v, (1.2
give somewhat different predictions of the atomic response
to a strong bichromatic field. These discrepancies are very
small for the examples given in Refgl] and[2] but are  With Bloch vector
more prominent for stronger bichromatic fields; see Fig. 1. It
was quite surprising to find these inconsistencies, since both

formalisms use the optical Bloch equations to describe the X1(1) (871

atomic response and solve these equations in similar ways. X(t)=| Xao(t) | =] (S* (1)) |, (1.3
In this Comment, we analyze the expansions used to solve X4(t) ~s
the optical Bloch equations for the resonance-fluorescence 3 (S4(1))

spectrum and develop a solution that facilitates extracting the
time-averaged fluorescence from this formalism. We showoupling matrix
that this solution gives predictions identical to those from
Ref.[1] and allows us to identify the subtleties that led to the ~
discrepancies in the results of R¢2]. Reference$l] and £z (a)
[2] have been cited extensively, and the results that we iden§
tify as being problematic have been used in subsequent r€§
search3], so we believe that a resolution of these discrep-
ancies is of general interest.

S

I. OPTICAL BLOCH EQUATIONS FOR BICHROMATIC
EXCITATION

We first review the mathematical model from Ref] of a
two-level atom under bichromatic excitation. A two-level
atom, with ground statég) and excited statge), is illumi-
nated by a bichromatic electric field
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with field frequencieso; and amplitudesEj. The atomic
response to the bichromatic field is studied through the dy- ) o o
namics of the transition operator§+=|e><g| and FIG. 1. Discrepancies in the predictions of the resonance-

S™=|g)(e| and the inversion operator2=|e)(e|—|g)(g|. ~ fluorescence spectrum, witw) 5=5I', A=0, 0,=8I', and (),
In a frame that rotates with the average field frequency” L>-& Loriginally investigated in Refi2], Fig. 4c)], and (b) &

_ . =90I'/2, A=—-11I'/2, Q,=8I", andQ,=16I". Solid lines show the
ws=(w,+ 0,)/2, the expectation values of the transmrmedpredictions from Ref[1], and dashed lines show those from Ref.

operatorsS =S~ e, _S+ =S"e '*!, and =& satisfy [2]. Note that Ref[1] computes the inelastic fluorescence spectrum
the optical Bloch equations and Ref[2] computes the total fluorescence spectrum; these spectra
should agree everywhere except for frequeneiesw,— 216 (for
integerl), which correspond to the locations of the spikes in the
*Electronic address: daron@optics.rochester.edu elastic spectrum. We have omitted these frequencies in these plots.
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_EF_IA 0 Qlei&‘l'Qze_iat
1 . .
A(t)= 0 —EF—HA Qe+ Qe | (1.9
1 ist iot 1 i ot —ist
_E(Qle +Q,e'h _E(Qle +Q,e7'%) -r
[
and decay term b 199[ 1 + ! } (2.3b
. 2T P Q) .
0 =2 0,0, (2.39
— ) 1. ) P .. ' '
v 1F (1.5 2Py Qi
2 and

In these equations, & (w,— w4) is the frequency differ- 1

ence between the two applied fields= w,— wy is the de- 9=-5d0, (2.39
tuning between the atomic transition frequeney and the

average field frequency; is the EinsteinA coefficient for  \where we have defined

spontaneous emission, aflj=2 u-E;/% are the Rabi fre-

quencies of the applied fieldevhere u is the atomic transi- ) 1
tion electric dipole moment Equation (1.2) assumes an P/=il 6+ §F+|A (2.439
electric dipole interaction between the atom and the field and
makes use of the rotating-wave approximation. and
II. SOLUTION OF THE BLOCH EQUATIONS Q,=il 6+ El"—iA (2.4b
5 . .

Since the elements of the coupling matéXt) and the
decay termv in the optical Bloch equation€l.2) are either  The coefficientsX{) can be found numerically from this re-
time independent or periodic in time with periodr25, i currence relation using continued-fractiph] or matrix [2]
the long-time limit, the atomic expectation values will re- methods. Then, the transition-operator components are given
spond at the harmonics of frequendy Thus, the optical by
Bloch equations in this limit are solved by a Floquet expan-

sion, 1 _
x<1'>=5|[91x<3' Dt X+ (2.5a
X(t)= >, XOel, 2.)  and
|=—o
: - | . n_ 1 (1+1) (I-1)
The expansion coefficient$(") are needed to determine the X5 :a[ﬂlx3 +Q,X5 ]
resonance-fluorescence spectrum, so we provide a prescrip- ! (2.5b

tion for calculating them here. By inserting E§.1) into Eq.
(1.2), it has been showfl,2] that the inversion components

obey a three-term recurrence relation IIl. RESONANCE-FLUORESCENCE SPECTRUM

The resonance-fluorescence spectf@inis given by

aX§ +bX§~P+dx§ =g, 2.2
— - - + — ioT
where S(t,w)=T"u(r) Re . dr(S"(1)S (t+7))e'“", (3.1
1 1 r)= i i -
ay= (il 5+T)+ —Qf[ N Where.u(r) - (3/&7)A3|r99, with 6 thg angle pgtwegn the ob
2 Q-1 P servation directiorr and the atomic transition dipole mo-

mentu. The correlation function in the integrand of £§.1)
(2.33 is computed by introducing a two-time correlation vector
Y (t,7), with components

1 N 1
Po1 Qi

1
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Y (t T):<§+(t)§‘(t+ ) (3.29 whereas the decay term depends on the initial tipwd the
ne ' two-time correlation. To further intertwine the role of these
Y S two time quantities, note that the differential equati@®)
2t N =(ST (VS (t+7)), (3.25 involves a derivative with respect to the time difference
and but this equation is used to determine the dc resonance fluo-
rescence spectrum by averaging E}1) over the timet for
Y3(t, )= (ST (S (t+ 7). (3.29  aperiod 2r/6.
Applying the quantum regression theor¢4j to the optical IV. EXPANSION OF THE CORRELATION VECTOR
Bloch equations, this vector is found to satisfy the partial
differential equation The differential equatio3.3) can be solved by an expan-
sion of the form
oY
&—=A(t+ 7)Y (t,7) + X,(t)v. (3.3 * _
T Y(t,r)= > YO(t,7r)elot+n, (4.2)
|=—
The subtleties in solving this equation arise from the fact
that the coupling matrix depends on the final tinte-¢), Inserting this expansion into E¢B.3), we find that
|
ooy 1 - .
ell&(t+7):__FX2(t)_ E (F+i|5)Yg)ell5(t+T)
|=—o aT 2 |=—o
1 o _
=3 2 [0YTT D0 Y40, YD+ 0,78 el ), 4.2

|
where we show only the third component of the vector ex-distinct (nonoverlappingrange of the “-frequency” space.
pansion for brevity. Equationt4.1l) expresses an unknown In this way, we can partition Eq4.2) by these frequency
function Y(t,7) in terms of a set of function§Y()(t,7)}, ranges, grouping terms according to the closest carrier fre-
and there are an infinite number of ways to partition thequencye'' 7, to find that

unknown function in this way. The expansion functions

Y)(t,7) are only specified uniquely when additional con- oY)
straints are imposed on them; once such constraints have ——=—ST'Xy(1)} 0~ (F+|I5)Y(')——[Q y{+b
been stipulated, we can extract differential equations that are T

satisfied by the function¥"(t,7) individually from the in- + QY D40, Y V40,7, (5.1)

finite sums in Eq(4.2).

Equation(4.1) is reminiscent of an amplitude-modulation
expansion, since the functio¥i(t,r) is decomposed into a
series of carrier signalg'®*7 with varying amplitudes

U]
YW(t, 7). Indeed(l;[he constraints we impose on the expanranges the presence of the raising operxdgt) in Eq. (5.1)
sion functions Y'/(t,7) involve their frequency-domain 0
shows that the function"" will not necessarily have a

properties. However, it is crucial to emphasize that there aré
two distinct frequency domains for the functiaf(t,7): a narrowt-frequency range. That is, since Eg.1) establishes

« r-frequency” domain, suggested by E@.1), that is de- that the mean raising operator responds at all harmonics of

fined by a Fourier transform with respect to the time deta the frequencyp, we see that the information about the time-
1 Dy & ; P o y averaged resonance fluorescence is distributed over the Fou-
for fixed timet, and a ‘t-frequency domain,” analogously

defined by a Fourier transform with respect to the tinfier rier transforms of the fu.II set .Of functions}) ano_l can only
fixed time delayr. l:_)e extrat_:ted by averaging t_hls full set of fu_nctlons over the

time period 27/6. Instead, in Ref[2], the time-averaged
fluorescence was attributed only to the transform of the func-
tion Y(lo)(t,r), and this is the source of the discrepancies
noted in our Comment.

Recall that the quantity we wish to calculate is tirae-
averagedresonance fluorescence. Although we have con-
strained the function&") according to theirr-frequency

V. THE SOURCE OF THE DISCREPANCIES:
THE 7-FREQUENCY PARTITION

The results of Refl2] can be obtained by partitioning the
function Y(t,7) in the r-frequency space. For fixed tinte
we demand that the bandwidth af!)(t,7) (defined by a
Fourier transform with respect te) lies within a frequency The functionY;(t, ) can also be partitioned based on the
window of width 6 around the origin for all. This constraint  frequencies with respect to the tirhéor fixed delayr. With
is equivalent to requiring that each term in E4.1) covers a  this constraint, the differential equati@gA.l) is grouped ac-

VI. THE t-FREQUENCY PARTITION
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cording to the nearest carrier frequerg®y", which results in 0 r 0
the differential equations GCi=Y3'(t,7=0)= 53X’ oo~ ws—14]
J 1 1 1 Q
v _[Z i i 0} (I-1) (I+1) _ _ = 2 (1-1) _
aTYl 2F+|I5+|A Y+ Y5+ QY5 i(w—ws—lﬁ)] 2[P|1(w)Y1 (t,7=0)
(6.1a
BNV (R D P
VOISO 0 (1+1) (1-1) : P'+1(“’)Y1 v 0)}' 049
E‘YZ =— §F+|I6—|A YZ +QlY3 +QZY3 s
(6.1  where we have defined
I v— Loy iler - 0) . . 1
6)—73{3 =—EFX2 e —(I'+il ) Y5 P|(w)=—|(w—ws)+|I5+§F+|A (6.5a
1 (1+1) (I-1) d
_E[QlYl +92Y1 an
(1-1) (1+1) 1
FOYZ QYR 6.19 Q@)= —i(w—wg+il 5+ 5T—=iA.  (65b
where we have assumed the long-time limit of the raising
operatorX,(t) given by Eq.(2.1). This system of equations The initial conditions are found to be
is ideally suited for our goal of computing the time-averaged
fluorescence, because the zero frequefitat is, time- 1
averageyl component ofY,(t,7) has been placed solely in Y{(t, 7= O)=§5|,O+Xg'), (6.63
thel=0 component by the constraints chosen for this parti-
tioning scheme. 0
We solve this system with Fourier transform methods, us- Y3’(t,7=0)=0, and (6.6b
ing the convention that a functiol(7) is related to its one-
sided Fourier transformi(w) by n 10
Y3 (t,TZO): - _X2 . (6.6(.)

2
f(w):J:f(T)e“w-wS)TdT. (6.2

Note that the recurrence relation described by E§s3)—

(6.5 and the initial conditions in Eqg6.6) are, in fact, in-
Here, the frequency is offset by the field frequencws  dependent of the time This fortuitous result tells us that the

because our starting equations describe dynamics in this réime-averaged resonance fluorescence is simply proportional
to the quantity R& {”(t,»), without the need to average

tating frame. Applying this transformation to Ed§.1), we

find that the components af; obey a three-term recurrence this function over time explicitly.
relation,

AYP(t,0)+B Y  2D(t,w)+D, Y (t,0)=G,

(6.3
where (1) 1 0]
Yi (t:w):m[Yl (7=0)
A=—i(w—wg)+IT+il 6+ }Qi ! + ! +0, Y0 (1, 0)+Q,Y 1V (t, w)]
2 Pr(e)  Q-y(w) s ’ 203 ’
1 1 1 (6.79
+ _QZ[ + , 6.4
2P (o) " Qrrlw) 043 and
B|=£9192{ t o, } (6.4b TPt w)=—1 [Q YV (t0)+ QY V(t,0)]
2 Pi_i(w)  Q-1(w) 2" I ’ 273 T
(6.7b
1 1 1
D'259192 P () + Qi 1(w)]| (6.49 so the time:average(ﬂc) resonance-fluorescence spectrum
S(t,w)=ReY{?(t,w) can be determined with Eq6.73,
and thereby completing our solution.

067401-4

The coefficientsr {)(t, ) can be found numerically from
this recurrence relation using continued-fraction or matrix

methods. The components ¥f, and Y, are then given by
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Note that in previous work1,2], systems of equations VIl. RECONCILIATION AND CONCLUSION

similar to Eqgs.(6.1) were solved using Laplace transforms i . . )
(using the integration kerne™°7, with Re s>0), then the Referencd 1] computes only the so-called inelastic com

~ _ponent of the resonance-fluorescence spectrum. The two-

i Xime correlation Bloch vector pertinent to the inelastic spec-
values of the transform variabte On one hand, such a pro- ,m [see Ref[1], Eq. (2)] satisfies a partial differential

cedure misses the Diratfunction term that we reportin our  equation that lacks the decay tesmin such situations, par-
expression foG;, above. On the other hand, this procedureitioning the expansior.1) either by the “ frequencies” or
is consistent with calculating the physical spectrumthe “t frequencies” leads to the same final prescription for
S(t,w,I"), as defined by Eberly and Wodkiewi€a], in the  determining the fluorescence spectrum. So the results of Ref.
limit of narrow detector spectral widthi. We prefer to apply [1] are unaffected by the subtleties in solving the optical
the transform defined in E@6.2) and convolve the predicted Bloch equations described here.
resonance-fluorescence spectrum with the detector responseFinally, we have confirmed that our solution of the full
separately. resonance-fluorescence spectrum, E@3)—(6.7), agrees

In the end, our prescription for computing the resonancavith the prescription from Refl1], Egs.(5)—(9), in all cases
fluorescence, Eq$6.3—(6.7), is quite similar to that in Ref. given as examples in Refgl] and[2], to within the preci-
[2], differing only in the form of the coefficier®, . Specifi- ~ sion of the computer calculations. Thus we have reconciled
cally, our expressiol6.4d involves a quantity proportional the discrepancies in the two predictions of the resonance-
to T X{/[2i (0 — ws—18)], whereas in the cited reference it fluorescence spectrum.
appears (in the present notation as proportional to
T' X8 o/[2i(0— wg)]. Since the Floquet expansion for
X5(t) is dominated by thé=0 term for the examples given We thank Michael Van Leeuwen for helpful discussions.
in Refs.[1] and[2], this justifies our initial observation that This work was supported by the Office of Naval Research,
the discrepancies are typically small. Grant No. N00014-99-1-0539.
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