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Comment on ‘‘Resonance-fluorescence and absorption spectra of a two-level atom driven
by a strong bichromatic field’’

David L. Aronstein,* Ryan S. Bennink, Robert W. Boyd, and C. R. Stroud, Jr.
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~Received 16 November 2000; revised manuscript received 11 October 2001; published 17 June 2002!

We identify discrepancies between two published predictions of the resonance fluorescence from a two-level
atom driven by a strong bichromatic field@J. Opt. Soc. Am. B8, 1163 ~1991! and Phys. Rev. A48, 3092
~1993!#. These discrepancies are shown to arise from subtleties in extracting the time-averaged resonance
fluorescence from the expansions used to solve the optical Bloch equations. We construct a solution to these
equations that corrects the results of the latter reference and reconciles the two predictions.

DOI: 10.1103/PhysRevA.65.067401 PACS number~s!: 42.50.Hz, 33.50.Dq, 32.80.2t
wo

ns
e

.
o
th
y
ol
n
th
o
m

he

e
t r
p

el

dy

c
ed

ce-

f.
um
ctra

he
lots.
In studying the resonance fluorescence from a driven t
level atom, we discovered that two well-known theories@1,2#
give somewhat different predictions of the atomic respo
to a strong bichromatic field. These discrepancies are v
small for the examples given in Refs.@1# and @2# but are
more prominent for stronger bichromatic fields; see Fig. 1
was quite surprising to find these inconsistencies, since b
formalisms use the optical Bloch equations to describe
atomic response and solve these equations in similar wa

In this Comment, we analyze the expansions used to s
the optical Bloch equations for the resonance-fluoresce
spectrum and develop a solution that facilitates extracting
time-averaged fluorescence from this formalism. We sh
that this solution gives predictions identical to those fro
Ref. @1# and allows us to identify the subtleties that led to t
discrepancies in the results of Ref.@2#. References@1# and
@2# have been cited extensively, and the results that we id
tify as being problematic have been used in subsequen
search@3#, so we believe that a resolution of these discre
ancies is of general interest.

I. OPTICAL BLOCH EQUATIONS FOR BICHROMATIC
EXCITATION

We first review the mathematical model from Ref.@2# of a
two-level atom under bichromatic excitation. A two-lev
atom, with ground stateug& and excited stateue&, is illumi-
nated by a bichromatic electric field

E~ t !5@E1e2 iv1t1E2e2 iv2t#1c.c., ~1.1!

with field frequenciesv j and amplitudesEj . The atomic
response to the bichromatic field is studied through the
namics of the transition operatorsS15ue&^gu and
S25ug&^eu and the inversion operator 2Sz5ue&^eu2ug&^gu.
In a frame that rotates with the average field frequen
vs5(v11v2)/2, the expectation values of the transform
operatorsS̃25S2 eivst, S̃15S1 e2 ivst, and S̃z5Sz satisfy
the optical Bloch equations
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5A~ t !X~ t !1v, ~1.2!

with Bloch vector

X~ t !5F X1~ t !

X2~ t !

X3~ t !
G5F ^S̃2~ t !&

^S̃1~ t !&

^S̃z~ t !&
G , ~1.3!

coupling matrix

FIG. 1. Discrepancies in the predictions of the resonan
fluorescence spectrum, with~a! d55G, D50, V158G, and V2

513.6G @originally investigated in Ref.@2#, Fig. 4~c!#, and ~b! d
59G/2, D5211G/2, V158G, andV2516G. Solid lines show the
predictions from Ref.@1#, and dashed lines show those from Re
@2#. Note that Ref.@1# computes the inelastic fluorescence spectr
and Ref.@2# computes the total fluorescence spectrum; these spe
should agree everywhere except for frequenciesv5v222ld ~for
integer l ), which correspond to the locations of the spikes in t
elastic spectrum. We have omitted these frequencies in these p
©2002 The American Physical Society01-1
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A~ t !5F 2
1

2
G2 iD 0 V1eidt1V2e2 idt

0 2
1

2
G1 iD V1e2 idt1V2eidt

2
1

2
~V1e2 idt1V2eidt! 2

1

2
~V1eidt1V2e2 idt! 2G

G , ~1.4!
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and decay term

v5F 0

0

2
1

2
G
G . ~1.5!

In these equations, 2d5(v22v1) is the frequency differ-
ence between the two applied fields,D5v02vs is the de-
tuning between the atomic transition frequencyv0 and the
average field frequency,G is the EinsteinA coefficient for
spontaneous emission, andV j52 m•Ej /\ are the Rabi fre-
quencies of the applied fields~wherem is the atomic transi-
tion electric dipole moment!. Equation ~1.2! assumes an
electric dipole interaction between the atom and the field
makes use of the rotating-wave approximation.

II. SOLUTION OF THE BLOCH EQUATIONS

Since the elements of the coupling matrixA(t) and the
decay termv in the optical Bloch equations~1.2! are either
time independent or periodic in time with period 2p/d, in
the long-time limit, the atomic expectation values will r
spond at the harmonics of frequencyd. Thus, the optical
Bloch equations in this limit are solved by a Floquet expa
sion,

X~ t !5 (
l 52`

`

X( l )eil dt. ~2.1!

The expansion coefficientsX( l ) are needed to determine th
resonance-fluorescence spectrum, so we provide a pres
tion for calculating them here. By inserting Eq.~2.1! into Eq.
~1.2!, it has been shown@1,2# that the inversion component
obey a three-term recurrence relation,

alX3
( l )1blX3

( l 22)1dlX3
( l 12)5gl , ~2.2!

where

al5~ i l d1G!1
1

2
V1

2F 1

Ql 21
1

1

Pl 11
G

1
1

2
V2

2F 1

Pl 21
1

1

Ql 11
G , ~2.3a!
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bl5
1

2
V1V2F 1

Pl 21
1

1

Ql 21
G , ~2.3b!

dl5
1

2
V1V2F 1

Pl 11
1

1

Ql 11
G , ~2.3c!

and

gl52
1

2
Gd l ,0 , ~2.3d!

where we have defined

Pl5 i l d1
1

2
G1 iD ~2.4a!

and

Ql5 i l d1
1

2
G2 iD. ~2.4b!

The coefficientsX3
( l ) can be found numerically from this re

currence relation using continued-fraction@1# or matrix @2#
methods. Then, the transition-operator components are g
by

X1
( l )5

1

Pl
@V1X3

( l 21)1V2X3
( l 11)# ~2.5a!

and

X2
( l )5

1

Ql
@V1X3

( l 11)1V2X3
( l 21)#.

~2.5b!

III. RESONANCE-FLUORESCENCE SPECTRUM

The resonance-fluorescence spectrum@2# is given by

S~ t,v!5G u~ r̂ ! ReE
0

`

dt ^S1~ t !S2~ t1t!&eivt, ~3.1!

whereu( r̂ )5(3/8p)sin2u, with u the angle between the ob
servation directionr̂ and the atomic transition dipole mo
mentm. The correlation function in the integrand of Eq.~3.1!
is computed by introducing a two-time correlation vect
Y(t,t), with components
1-2
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Y1~ t,t!5^S̃1~ t !S̃2~ t1t!&, ~3.2a!

Y2~ t,t!5^S̃1~ t !S̃1~ t1t!&, ~3.2b!

and

Y3~ t,t!5^S̃1~ t !S̃z~ t1t!&. ~3.2c!

Applying the quantum regression theorem@4# to the optical
Bloch equations, this vector is found to satisfy the par
differential equation

]Y

]t
5A~ t1t!Y~ t,t!1X2~ t !v. ~3.3!

The subtleties in solving this equation arise from the f
that the coupling matrix depends on the final time (t1t),
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whereas the decay term depends on the initial timet, of the
two-time correlation. To further intertwine the role of the
two time quantities, note that the differential equation~3.3!
involves a derivative with respect to the time differencet,
but this equation is used to determine the dc resonance
rescence spectrum by averaging Eq.~3.1! over the timet for
a period 2p/d.

IV. EXPANSION OF THE CORRELATION VECTOR

The differential equation~3.3! can be solved by an expan
sion of the form

Y~ t,t!5 (
l 52`

`

Y( l )~ t,t!eil d(t1t). ~4.1!

Inserting this expansion into Eq.~3.3!, we find that
(
l 52`

` ]Y3
( l )

]t
eil d(t1t)52

1

2
GX2~ t !2 (

l 52`

`

~G1 i l d!Y3
( l )eil d(t1t)

2
1

2 (
l 52`

`

@V1Y1
( l 11)1V2Y1

( l 21)1V1Y2
( l 21)1V2Y2

( l 11)#eil d(t1t), ~4.2!
fre-
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where we show only the third component of the vector
pansion for brevity. Equation~4.1! expresses an unknow
function Y(t,t) in terms of a set of functions$Y( l )(t,t)%,
and there are an infinite number of ways to partition
unknown function in this way. The expansion functio
Y( l )(t,t) are only specified uniquely when additional co
straints are imposed on them; once such constraints h
been stipulated, we can extract differential equations that
satisfied by the functionsY( l )(t,t) individually from the in-
finite sums in Eq.~4.2!.

Equation~4.1! is reminiscent of an amplitude-modulatio
expansion, since the functionY(t,t) is decomposed into a
series of carrier signalseil d(t1t) with varying amplitudes
Y( l )(t,t). Indeed, the constraints we impose on the exp
sion functions Y( l )(t,t) involve their frequency-domain
properties. However, it is crucial to emphasize that there
two distinct frequency domains for the functionY(t,t): a
‘‘ t-frequency’’ domain, suggested by Eq.~3.1!, that is de-
fined by a Fourier transform with respect to the time delat
for fixed time t, and a ‘‘t-frequency domain,’’ analogously
defined by a Fourier transform with respect to the timet for
fixed time delayt.

V. THE SOURCE OF THE DISCREPANCIES:
THE t-FREQUENCY PARTITION

The results of Ref.@2# can be obtained by partitioning th
function Y(t,t) in the t-frequency space. For fixed timet,
we demand that the bandwidth ofY( l )(t,t) ~defined by a
Fourier transform with respect tot) lies within a frequency
window of widthd around the origin for alll. This constraint
is equivalent to requiring that each term in Eq.~4.1! covers a
-

e

ve
re

-

re

distinct ~nonoverlapping! range of the ‘‘t-frequency’’ space.
In this way, we can partition Eq.~4.2! by these frequency
ranges, grouping terms according to the closest carrier
quencyeil dt, to find that

]Y3
( l )

]t
52

1

2
GX2~ t !d l ,02~G1 i l d!Y3

( l )2
1

2
@V1Y1

( l 11)

1V2Y1
( l 21)1V1Y2

( l 21)1V2Y2
( l 11)#. ~5.1!

Recall that the quantity we wish to calculate is thetime-
averagedresonance fluorescence. Although we have c
strained the functionsY( l ) according to theirt-frequency
ranges, the presence of the raising operatorX2(t) in Eq. ~5.1!
shows that the functionsY( l ) will not necessarily have a
narrowt-frequency range. That is, since Eq.~2.1! establishes
that the mean raising operator responds at all harmonic
the frequencyd, we see that the information about the tim
averaged resonance fluorescence is distributed over the
rier transforms of the full set of functionsY1

( l ) and can only
be extracted by averaging this full set of functions over
time period 2p/d. Instead, in Ref.@2#, the time-averaged
fluorescence was attributed only to the transform of the fu
tion Y1

(0)(t,t), and this is the source of the discrepanc
noted in our Comment.

VI. THE t-FREQUENCY PARTITION

The functionY j (t,t) can also be partitioned based on t
frequencies with respect to the timet for fixed delayt. With
this constraint, the differential equation~4.1! is grouped ac-
1-3
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cording to the nearest carrier frequencyeil dt, which results in
the differential equations

]

]t
Y1

( l )52S 1

2
G1 i l d1 iD DY1

( l )1V1Y3
( l 21)1V2Y3

( l 11) ,

~6.1a!

]

]t
Y2

( l )52S 1

2
G1 i l d2 iD DY2

( l )1V1Y3
( l 11)1V2Y3

( l 21) ,

~6.1b!

]

]t
Y3

( l )52
1

2
G X2

( l )e2 i l dt2~G1 i l d!Y3
( l )

2
1

2
@V1Y1

( l 11)1V2Y1
( l 21)

1V1Y2
( l 21)1V2Y2

( l 11)#, ~6.1c!

where we have assumed the long-time limit of the rais
operatorX2(t) given by Eq.~2.1!. This system of equation
is ideally suited for our goal of computing the time-averag
fluorescence, because the zero frequency~that is, time-
averaged! component ofY1(t,t) has been placed solely i
the l 50 component by the constraints chosen for this pa
tioning scheme.

We solve this system with Fourier transform methods,
ing the convention that a functionf (t) is related to its one-
sided Fourier transformf̂ (v) by

f̂ ~v!5E
0

`

f ~t!ei (v2vs)tdt. ~6.2!

Here, the frequencyv is offset by the field frequencyvs
because our starting equations describe dynamics in this
tating frame. Applying this transformation to Eqs.~6.1!, we
find that the components ofŶ3 obey a three-term recurrenc
relation,

AlŶ3
( l )~ t,v!1BlŶ3

( l 22)~ t,v!1DlŶ3
( l 12)~ t,v!5Gl ,

~6.3!

where

Al52 i ~v2vs!1G1 i l d1
1

2
V1

2F 1

Pl 11~v!
1

1

Ql 21~v!G
1

1

2
V2

2F 1

Pl 21~v!
1

1

Ql 11~v!G , ~6.4a!

Bl5
1

2
V1V2F 1

Pl 21~v!
1

1

Ql 21~v!G , ~6.4b!

Dl5
1

2
V1V2F 1

Pl 11~v!
1

1

Ql 11~v!G , ~6.4c!

and
06740
g

d

i-

-

o-

Gl5Y3
( l )~ t,t50!2

G

2
X2

( l )H pd@v2vs2 ld#

2
1

i ~v2vs2 ld!J 2
1

2 F V2

Pl 21~v!
Y1

( l 21)~ t,t50!

1
V1

Pl 11~v!
Y1

( l 11)~ t,t50!G , ~6.4d!

where we have defined

Pl~v!52 i ~v2vs!1 i l d1
1

2
G1 iD ~6.5a!

and

Ql~v!52 i ~v2vs!1 i l d1
1

2
G2 iD. ~6.5b!

The initial conditions are found to be

Y1
( l )~ t,t50!5

1

2
d l ,01X3

( l ) , ~6.6a!

Y2
( l )~ t,t50!50, and ~6.6b!

Y3
( l )~ t,t50!52

1

2
X2

( l ) . ~6.6c!

Note that the recurrence relation described by Eqs.~6.3!–
~6.5! and the initial conditions in Eqs.~6.6! are, in fact, in-
dependent of the timet. This fortuitous result tells us that th
time-averaged resonance fluorescence is simply proporti
to the quantity ReŶ1

(0)(t,v), without the need to averag
this function over time explicitly.

The coefficientsŶ3
( l )(t,v) can be found numerically from

this recurrence relation using continued-fraction or mat
methods. The components ofŶ1 and Ŷ2 are then given by

Ŷ1
( l )~ t,v!5

1

Pl~v!
@Y1

( l )~t50!

1V1Ŷ3
( l 21)~ t,v!1V2Ŷ3

( l 11)~ t,v!#

~6.7a!

and

Ŷ2
( l )~ t,v!5

1

Ql~v!
@V1Ŷ3

( l 11)~ t,v!1V2Ŷ3
( l 21)~ t,v!#,

~6.7b!

so the time-averaged~dc! resonance-fluorescence spectru
S(t,v)}ReŶ1

(0)(t,v) can be determined with Eq.~6.7a!,
thereby completing our solution.
1-4
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Note that in previous work@1,2#, systems of equation
similar to Eqs.~6.1! were solved using Laplace transform
~using the integration kernele2st, with Re s.0), then the
resulting expressions were evaluated for purely imagin
values of the transform variables. On one hand, such a pro
cedure misses the Diracd function term that we report in ou
expression forGl , above. On the other hand, this procedu
is consistent with calculating the physical spectru
S(t,v,G), as defined by Eberly and Wodkiewicz@5#, in the
limit of narrow detector spectral widthG. We prefer to apply
the transform defined in Eq.~6.2! and convolve the predicte
resonance-fluorescence spectrum with the detector resp
separately.

In the end, our prescription for computing the resonan
fluorescence, Eqs.~6.3!–~6.7!, is quite similar to that in Ref.
@2#, differing only in the form of the coefficientGl . Specifi-
cally, our expression~6.4d! involves a quantity proportiona
to G X2

( l )/@2i (v2vs2 ld)#, whereas in the cited reference
appears ~in the present notation! as proportional to
G X2

(0)d l ,0 /@2i (v2vs)#. Since the Floquet expansion fo
X2(t) is dominated by thel 50 term for the examples give
in Refs.@1# and @2#, this justifies our initial observation tha
the discrepancies are typically small.
J
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VII. RECONCILIATION AND CONCLUSION

Reference@1# computes only the so-called inelastic com
ponent of the resonance-fluorescence spectrum. The
time correlation Bloch vector pertinent to the inelastic sp
trum @see Ref.@1#, Eq. ~2!# satisfies a partial differentia
equation that lacks the decay termv. In such situations, par
titioning the expansion~4.1! either by the ‘‘t frequencies’’ or
the ‘‘t frequencies’’ leads to the same final prescription
determining the fluorescence spectrum. So the results of
@1# are unaffected by the subtleties in solving the opti
Bloch equations described here.

Finally, we have confirmed that our solution of the fu
resonance-fluorescence spectrum, Eqs.~6.3!–~6.7!, agrees
with the prescription from Ref.@1#, Eqs.~5!–~9!, in all cases
given as examples in Refs.@1# and @2#, to within the preci-
sion of the computer calculations. Thus we have reconc
the discrepancies in the two predictions of the resonan
fluorescence spectrum.
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